On the Hurwitz Zeta Functions with Algebraic Irrational Parameter
- Authors: Balčiūnas A.1, Dubickas A.1, Laurinčikas A.1
-
Affiliations:
- Institute of Mathematics
- Issue: Vol 105, No 1-2 (2019)
- Pages: 173-179
- Section: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/151539
- DOI: https://doi.org/10.1134/S0001434619010218
- ID: 151539
Cite item
Abstract
is well known that the Hurwitz zeta function ζ(s, α) with rational or transcendental parameter α is universal in the sense of Voronin, i.e., a wide class of analytic functions can be approximated by the shifts ζ(s + iτ, α), τ ∈ ℝ. The case of algebraic irrational α is still an open problem. It is proved that there exists a nonempty closed set of analytic functions that can be approximated by shifts ζ(s + iτ, α) with algebraic irrational α.
About the authors
A. Balčiūnas
Institute of Mathematics
Author for correspondence.
Email: aidas.balciunas@mif.vu.lt
Lithuania, Vilnius, LT, 03225
A. Dubickas
Institute of Mathematics
Author for correspondence.
Email: arturas.dubickas@mif.vu.lt
Lithuania, Vilnius, LT, 03225
A. Laurinčikas
Institute of Mathematics
Author for correspondence.
Email: antanas.laurincikas@mif.vu.lt
Lithuania, Vilnius, LT, 03225
Supplementary files
