An Extension of Calabi’s Correspondence between the Solutions of Two Bernstein Problems to More General Elliptic Nonlinear Equations
- Authors: Pelegrín J.A.1, Romero A.1, Rubio R.M.2
-
Affiliations:
- Departamento de Geometría y Topología
- Departamento de Matemáticas, Campus de Rabanales
- Issue: Vol 105, No 1-2 (2019)
- Pages: 280-284
- Section: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/151578
- DOI: https://doi.org/10.1134/S0001434619010309
- ID: 151578
Cite item
Abstract
A new correspondence between the solutions of theminimal surface equation in a certain 3-dimensional Riemannian warped product and the solutions of the maximal surface equation in a 3-dimensional standard static space-time is given. This widely extends the classical duality between minimal graphs in 3-dimensional Euclidean space and maximal graphs in 3-dimensional Lorentz–Minkowski space-time. We highlight the fact that this correspondence can be restricted to the respective classes of entire solutions. As an application, a Calabi–Bernstein-type result for certain static standard space-times is proved.
About the authors
José A. S. Pelegrín
Departamento de Geometría y Topología
Author for correspondence.
Email: jpelegrin@ugr.es
Spain, Granada, 18071
Alfonso Romero
Departamento de Geometría y Topología
Author for correspondence.
Email: aromero@ugr.es
Spain, Granada, 18071
Rafael. M. Rubio
Departamento de Matemáticas, Campus de Rabanales
Author for correspondence.
Email: rmrubio@uco.es
Spain, Córdoba, 14071
Supplementary files
