An Extension of Calabi’s Correspondence between the Solutions of Two Bernstein Problems to More General Elliptic Nonlinear Equations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new correspondence between the solutions of theminimal surface equation in a certain 3-dimensional Riemannian warped product and the solutions of the maximal surface equation in a 3-dimensional standard static space-time is given. This widely extends the classical duality between minimal graphs in 3-dimensional Euclidean space and maximal graphs in 3-dimensional Lorentz–Minkowski space-time. We highlight the fact that this correspondence can be restricted to the respective classes of entire solutions. As an application, a Calabi–Bernstein-type result for certain static standard space-times is proved.

About the authors

José A. S. Pelegrín

Departamento de Geometría y Topología

Author for correspondence.
Email: jpelegrin@ugr.es
Spain, Granada, 18071

Alfonso Romero

Departamento de Geometría y Topología

Author for correspondence.
Email: aromero@ugr.es
Spain, Granada, 18071

Rafael. M. Rubio

Departamento de Matemáticas, Campus de Rabanales

Author for correspondence.
Email: rmrubio@uco.es
Spain, Córdoba, 14071

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.