Multivariate Extremes of Random Scores of Particles in Branching Processes with Max-Linear Heredity
- Авторлар: Lebedev A.V.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: Том 105, № 3-4 (2019)
- Беттер: 376-384
- Бөлім: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/151612
- DOI: https://doi.org/10.1134/S0001434619030088
- ID: 151612
Дәйексөз келтіру
Аннотация
The paper continues the author’s long-term study of the extrema of random scores of particles in branching processes. It is assumed that the particle scores are dependent via common heredity, the dependence being determined by the distance. The case in which the scores have distributions with heavy tails is considered. The max-linear score generation model is used. The asymptotic behavior of multivariate extremes of scores over generations is studied. Nondegenerate limit laws are obtained for the maxima under linear normalization, and examples are given for various types of branching processes.
Негізгі сөздер
Авторлар туралы
A. Lebedev
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: avlebed@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
