Multiplicity Results for the Biharmonic Equation with Singular Nonlinearity of Super Exponential Growth in ℝ4
- Authors: Saoudi K.1,2, Kratou M.1,2, Al Zahrani E.1,2
-
Affiliations:
- Department of Mathematics
- Basic and Applied Scientific Research Center
- Issue: Vol 105, No 3-4 (2019)
- Pages: 404-424
- Section: Article
- URL: https://journal-vniispk.ru/0001-4346/article/view/151620
- DOI: https://doi.org/10.1134/S0001434619030118
- ID: 151620
Cite item
Abstract
We consider the following elliptic problem of exponential-type growth posed in an open bounded domain with smooth boundary B1 (0) ⊂ ℝ4: \((P_\lambda)\begin{cases}\Delta^{2}u = \lambda(u^{-\delta}+h(u)e^{u^{\alpha}}),\;\;u>0\;in\;B_{1}(0),\\\;\;\;\;\;u=\Delta{u}=0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\partial{B}_{1}(0).\end{cases}\) Here Δ2(.):= −Δ(−Δ)(.) denotes the biharmonic operator, 1 < α < 2, 0 < δ < 1, λ > 0, and h(t) is assumed to be a smooth “perturbation” of \({e^{{t^\alpha }}}\) as t→∞ (see (H1)–(H4) below). We employ variational methods in order to show the existence of at least two distinct (positive) solutions to the problem (Pλ) in \({H^2} \cap H_0^1({B_1}(0))\).
About the authors
K. Saoudi
Department of Mathematics; Basic and Applied Scientific Research Center
Author for correspondence.
Email: kmsaoudi@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441
M. Kratou
Department of Mathematics; Basic and Applied Scientific Research Center
Author for correspondence.
Email: mmkratou@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441
E. Al Zahrani
Department of Mathematics; Basic and Applied Scientific Research Center
Author for correspondence.
Email: ealzahrani@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441
Supplementary files
