Multiplicity Results for the Biharmonic Equation with Singular Nonlinearity of Super Exponential Growth in ℝ4


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the following elliptic problem of exponential-type growth posed in an open bounded domain with smooth boundary B1 (0) ⊂ ℝ4: \((P_\lambda)\begin{cases}\Delta^{2}u = \lambda(u^{-\delta}+h(u)e^{u^{\alpha}}),\;\;u>0\;in\;B_{1}(0),\\\;\;\;\;\;u=\Delta{u}=0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\partial{B}_{1}(0).\end{cases}\) Here Δ2(.):= −Δ(−Δ)(.) denotes the biharmonic operator, 1 < α < 2, 0 < δ < 1, λ > 0, and h(t) is assumed to be a smooth “perturbation” of \({e^{{t^\alpha }}}\) as t→∞ (see (H1)–(H4) below). We employ variational methods in order to show the existence of at least two distinct (positive) solutions to the problem (Pλ) in \({H^2} \cap H_0^1({B_1}(0))\).

About the authors

K. Saoudi

Department of Mathematics; Basic and Applied Scientific Research Center

Author for correspondence.
Email: kmsaoudi@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441

M. Kratou

Department of Mathematics; Basic and Applied Scientific Research Center

Author for correspondence.
Email: mmkratou@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441

E. Al Zahrani

Department of Mathematics; Basic and Applied Scientific Research Center

Author for correspondence.
Email: ealzahrani@iau.edu.sa
Saudi Arabia, Dammam, 31441; Dammam, 31441

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Ltd.