Low-Carbon Trinary Power Plants
- 作者: Kindra V.O.1
-
隶属关系:
- National Research University “Moscow Power Engineering Institute”
- 期: 编号 2 (2025)
- 页面: 65-80
- 栏目: Articles
- URL: https://journal-vniispk.ru/0002-3310/article/view/293833
- DOI: https://doi.org/10.31857/S0002331025020055
- ID: 293833
如何引用文章
详细
At present, improving environmental safety at thermal power plants is one of the key areas of energy development. In world practice, technologies for cleaning exhaust gases from nitrogen oxides, sulfur and ash are actively used. However, carbon dioxide captures technologies have not yet found wide application due to a significant decrease in the efficiency of electricity production. This paper presents the results of the development and study of process flow charts of binary and trinary power plants with minimal emissions of harmful substances into the atmosphere. The research revealed that the transition from monoethanolamine cleaning of exhaust gases to a methane steam reforming plant provides an increase in the net efficiency of a trinary power plant by 1.25% (for a combined-cycle plant by 1.16%) and a reduction in specific carbon dioxide emissions into the atmosphere by 2.3 times. The high efficiency of the power unit with an integrated steam methane reforming unit compared to monoethanolamine exhaust gas cleaning is due to a reduction in electricity costs for carbon dioxide capture by 8.2 MW.
作者简介
V. Kindra
National Research University “Moscow Power Engineering Institute”
编辑信件的主要联系方式.
Email: kindra.vladimir@yandex.ru
俄罗斯联邦, Moscow
参考
- Энергетическая стратегия Российской Федерации на период до 2035 года | Министерство энергетики РФ [Электронный ресурс]. URL: https://minenergo.gov.ru/node/1026 (дата обращения: 02.11.2022).
- Nitrous Oxide Emissions by Sector. 2024. Available online: https://ourworldindata.org/emissions-by-sector (accessed: 10.06. 2024).
- Ежова Н.Н., Сударева С.В. Современные методы очистки дымовых газов тепловых электростанций от диоксида углерода // Теплоэнергетика. 2009. № 1 С. 14–19.
- Замятина А.В., Богатова Т.Ф., Осипов П.В. Анализ технологий улавливания CO2 // Энерго- и ресурсосбережение. Энергообеспечение. Нетрадиционные и возобновляемые источники энергии. Атомная энергетика. Екатеринбург. 2019. С. 807–810.
- Киндра В.О., Комаров И.И., Злывко О.В., Максимов И.А., Островский М.А. Термодинамический анализ тринарных энергоустановок // Известия РАН. Энергетика. 2024. № 1. С. 70–81.
- Ibigbami O.A., Onilearo O.D., & Akinyeye R.O. Post‐combustion capture and other Carbon Capture and Sequestration (CCS) technologies: a review // Environmental Quality Management. 2024.
- Song C., Liu Q., Deng S., Li H., Kitamura Y. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges // Renew. Sustain. Energy Rev. 2019. V. 101. P. 265–278.
- Kamio E., Yoshioka T., Matsuyama H. Recent Advances in Carbon Dioxide Separation Membranes: A Review // J. Chem. Eng. Jpn. 2023. V. 56. P. 2222000.
- Mondal M.K., Balsora H.K., Varshney P. Progress and trends in CO2 capture/separation technologies: A review // Energy. 2012. V. 46. P. 431–441.
- Maniarasu R., Rathore S.K., Murugan S. A review on materials and processes for carbon dioxide separation and capture // Energy Environ. 2023. V. 34. P. 3–57.
- Vorokhta M., Kusdhany M.I.M., Vöröš D., Nishihara M., Sasaki K., Lyth S.M. Microporous carbon foams: The effect of nitrogen-doping on CO2 capture and separation via pressure swing adsorption // Chem. Eng. J. 2023. V. 471. P. 144524.
- Kindra V., Maksimov I., Oparin M., Zlyvko O., Rogalev A. Hydrogen Technologies: A Critical Review and Feasibility Study // Energies. 2023. V. 16. P. 5482.
- Ma L.-C., Dominguez B.C., Kazantzis N.K., Ma Y.H. Integration of membrane technology into hydrogen production plants with CO2 capture: An economic performance assessment study // Int. J. Greenh. Gas Control. 2015. V. 42. P. 424–438.
- Fernandez J.R., Abanades J.C.; Grasa G. Modeling of sorption enhanced steam methane reforming-Part II: Simulation within a novel Ca/Cu chemical loop process for hydrogen production // Chem. Eng. Sci. 2012. V. 84. P. 12–20.
- Komarov I., Osipov S., Zlyvko O., Vegera A., Naumov V. Combined Cycle Gas Turbine for Combined Heat and Power Production with Energy Storage by Steam Methane Reforming // J. Energy Syst. 2021. V. 5. P. 231–243
- Pashchenko D. Performance Evaluation of a Combined Power Generation System Integrated with Thermochemical Exhaust Heat Recuperation Based on Steam Methane Reforming // Int. J. Hydrogen Energy. 2023. V. 48. P. 5823–5835.
- Mullen D., Herraiz L., Lucquiaud M. Advanced Thermodynamic Integration in Combined Fuel and Power (CFP) Plants Producing Low Carbon Hydrogen & Power with CCUS. Proceedings of the 15th Greenhouse Gas Control Technologies Conference. 2021. P. 15–18.
- Lozza G., Chiesa P. Natural gas decarbonization to reduce CO2 emission from combined cycles – Part I: Partial oxidation. J. Eng. Gas Turbines Power. 2000. V. 124. P. 82–88.
- Aspen Technology, Inc. Aspen Plus. Available online: https://www.aspentech.com/en/products/engineering/aspen-plus (accessed on 19 July 2021).
- Lemmon E.W., Bell I.H., Huber M.L., McLinden M.O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 10.0, National Institute of Standards and Technology; Standard Reference Data Program: Gaithersburg, MA, USA, 2018.
- Quirino P., Amaral A., Pontes K., Rossi F., Manenti F. Impact of kinetic models in the prediction accuracy of an indus-trial steam methane reforming unit. // Comput. Chem. Eng. 2021. V. 152. P. 107379.
- Stray J.D. Control of Corrosion and Fouling in Amine Sweetening Systems, presented at the NACE Canada Region Western Conference Calgary, Alberta February, 1990. P. 20–22.
补充文件
