Stochastic Simulation and Development of the Ground Motion Prediction Equation for the Baikal Rift Zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To obtain realistic and correct estimates of seismic effects in the Baikal Rift Zone (BRZ), a ground motion prediction equation has been developed based on the records of local earthquakes (magnitudes mb ~ 3.4–5.5, hypocentral distances R ~ 15–220 km) obtained by Ulan-Ude and Severomuisk seismic stations. At the first step, in our previous works, using stochastic simulation of the accelerograms of the recorded local earthquakes we estimated the regional parameters of radiation and propagation of seismic waves (stress drop in an earthquake source, quality function of the medium, geometrical spreading, wave attenuation at high frequencies, local site amplification, etc. These parameters were then used to generate a set of earthquake accelerograms over a wide range of magnitudes (Mw ~ 4.0–8.0) and distances (R ~ 1–200 km) on a rock site, and a ground motion prediction equation (GMPE) describing the dependence of peak ground accelerations (PGA) and peak ground velocities (PGV) on magnitude and distance are constructed. The obtained PGA estimates are compared with those estimated from GMPE recommended for BRZ by the international Global Earthquake Model (GEM) project. The scatter of the estimates obtained based on GEM GMPE indicates the relevance of developing the own GMPEs for Russian regions based on the records of local earthquakes. The GMPE derived in this work can be used for seismic hazard assessment in the BRZ eastern part and will be updated as new data are acquired.

About the authors

V. A. Pavlenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: pavlenko.vasily@gmail.com
Russia, 123242, Moscow

O. V. Pavlenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: olga@ifz.ru
Russia, 123242, Moscow

References

  1. Гусев А.А., Мельникова В.Н. Связи между магнитудами – среднемировые и для Камчатки // Вулканология и сейсмология. 1990. № 6. С. 55–63.
  2. Гусев А.А, Гусева Е.М. Свойства колебаний грунта при сильных землетрясениях Камчатки (ОБЗОР) // Вулканология и сейсмология. 2006. № 4. С. 14–24.
  3. Гусев А.А., Петухин А.Г., Гусева Е.М., Гордеев Е.И., Чебров В.Н. Средние спектры Фурье сильных движений грунта при землетрясениях Камчатки // Вулканология и сейсмология. 2006. № 5. С. 60–70
  4. Гусев А.Аю, Гусева Е.М. Характер масштабирования очаговых спектров для землетрясений Камчатки в диапазоне магнитуд 3.5–6.5 //Докл. РАН. 2017. Т. 472. № 5. С. 580–583. https://doi.org/10.7868/S0869565217050164
  5. Мельникова В.И., Гилёва Н.А., Радзиминович Я.Б., Середкина А.И. Култукское землетрясение 27 августа 2008 г. с MW = 6.3, I0 = 8–9 (Южный Байкал). Землетрясения Северной Евразии. 2008 год. Обнинск: ГС РАН. 2014. С. 386–407.
  6. Павленко О.В., Тубанов Ц.А. Характеристики излучения и распространения сейсмических волн в Байкальской рифтовой зоне, оцененные моделированием акселерограмм зарегистрированных землетрясений // Физика Земли. 2017. № 1. С. 20–33.
  7. Павленко О.В. Записи местных землетрясений как основа для корректных оценок сейсмических воздействий (на примере трассы второго Северомуйского тоннеля) // Геология и геофизика. 2022. № 2. С. 247–263. https://doi.org/10.15372/GiG2020203
  8. Суворов В.Д., Мишенькина З.Р., Петрик Г.В., Шелудько И.Ф. Земная кора и ее изостатическое состояние в Байкальской рифтовой зоне и прилегающих территориях по данным ДСС // Геология и геофизика. 1999. № 40. С. 303–316.
  9. Уломов В.И. Заключение эксперта В.И. Уломова, доктора физико-математических наук, профессора геофизики, члена экспертной комиссии Государственной экологической экспертизы материалов по обоснованию строительства “Трубопроводной системы первого пускового комплекса Восточная Сибирь–Тихий океан (ВСТО)” /ТЭО (проект)/по оценке сейсмической опасности О сейсмической опасности участка трассы нефтепровода ВСТО "Тайшет-Сковородино”. 2005. http://seismos-u.ifz.ru/personal/control.htm
  10. Abrahamson N.A., Silva W.J., Kamai R. Summary of the ASK14 ground motion relation for active crustal regions // Earthquake Spectra. 2014. V. 30. № 3. P. 1025–1055.
  11. Abubakirov I.R., Gusev A.A. Estimation of scattering properties of lithosphere of Kamchatka based on Monte-Carlo simulation of record envelope of a near earthquake // Phys Earth Planet Inter. 1990. V. 64. P. 52–67.
  12. Akkar S., Bommer J.J. Prediction of elastic displacement response spectra in Europe and the Middle East // Earthquake Engineering and Structural Dynamics. 2007. V. 36. P. 1275–1301.
  13. Boore D.M., Joyner W.B. Site amplifications for Generic Rock Sites // Bulletin of the Seismological Society of America. 1997. V. 87. P. 327–341.
  14. Boore D.M. Simulation of Ground Motion Using the Stochastic Method // Pure and Applied Geophysics. 2003. V. 160. P. 635–676.
  15. Boore D.M., Atkinson G.M. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s // Earthquake Spectra. 2008. V. 24. № 1. P. 99–138.
  16. Boore D.M. Ground-motion models for very-hard-rock sites in eastern North America: An update // Seismological Research Letters. 2018. V. 89. № 3. P. 1172–1184.
  17. Budnitz R.J., Apostolakis G., Boore D.M., Cluff L.S., Coppersmith K.J., Cornell C.A., Morris P.A. Recommendations for probabilistic seismic hazard analysis: guidance on uncertainty and use of experts. U.S. Nuclear Regulatory Commission Report NUREG/CR-6372. 1997.
  18. Campbell K.W., Bozorgnia Y. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s // Earthquake Spectra. 2008. V. 24. № 1. P. 139–171.
  19. Cauzzi C., Faccioli E. Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records // J. Seismology. 2008. V. 12. P. 453–475.
  20. Chiou B.S.-J., Youngs R.R. An NGA model for the average horizontal component of peak ground motion and response spectra // Earthquake Spectra. 2008. V. 24. № 1. P. 173–215.
  21. Douglas J. Ground-motion prediction equations 1964–2010. Final Rept. RP-59356-FR, Bureau de Recherches Geologiques et Minieres (BRGM), Orleans, France. 2011. 444 p.
  22. Douglas J. Ground motion prediction equations 1964-2017. Department of Civil and Environmental Engineering. University of Strathclyde. 2017. http://www.gmpe.org.uk/gmpereport2014.pdf
  23. Graizer V. Ground-motion prediction equations for central and eastern North America // Bulletin of the Seismological Society of America. 2016. V. 106. № 4. P. 1600–1612.
  24. Hanks T.C., McGuire R.K. The character of high frequency strong ground motion // Bulletin of the Seismological Society of America. 1981. V. 71. P. 2071–2095.
  25. Joyner W.B., Boore D.M. Methods of regression analysis of strong motion data // Bulletin of the Seismological Society of America. 1993. V. 83. № 2. P. 469–487.
  26. Konovalov A.V., Manaychev K.A., Stepnov A.A., Gavrilov A.V. Regional ground motion prediction equation for Sakhalin island // Seismic Instruments. 2019. V. 55. № 1. P. 70–77.
  27. Pavlenko O.V. Simulation of Ground Motion from Strong Earthquakes of Kamchatka Region (1992–1993) at Rock and Soil Sites // Pure and Applied Geophysics. 2013. V. 170. № 4. P. 571–595.
  28. Zhao J.X., Liang X., Jiang F., Xing H., Zhu M., Hou R., Zhang Y., Lan X., Rhoades D.A., Irikura K., Fukushima Y., Somerville P.G. Ground-motion prediction equations for subduction interface earthquakes in Japan using site class and simple geometric attenuation functions // Bulletin of the Seismological Society of America. 2016. V. 106. № 4. P. 1518–1534.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (1MB)
4.

Download (301KB)
5.

Download (444KB)
6.

Download (482KB)

Copyright (c) 2023 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».