Deep Structure of the Baikal Rift Zone and Central Mongolia
- Authors: Vinnik L.P.1, Delitsyn L.L.1, Makeeva L.I.1, Oreshin S.I.1
-
Affiliations:
- Shmidt Institute of Physics of the Earth, Russian Academy of Sciences
- Issue: No 2 (2024)
- Pages: 3-13
- Section: Articles
- URL: https://journal-vniispk.ru/0002-3337/article/view/255518
- DOI: https://doi.org/10.31857/S0002333724020014
- EDN: https://elibrary.ru/BUQILD
- ID: 255518
Cite item
Abstract
The upper mantle and the transition zone of the Baikal rift zone (BRZ) are studied. The observations are analyzed using P-wave receiver functions. It is found that in the BRZ central and northeastern part, the P410s converted seismic phase is preceded by a precursory wave with negative polarity which is formed in the low S-wave velocity layer at a depth of 350–410 km. A similar precursory wave with low S-wave velocity and negative polarity is formed at a depth of 600–660 km. The low-velocity layers are interpreted as resulting from the hydration of wadsleyite and ringwoodite during the subduction of the Pacific lithosphere. A similar study of the mantle in Central Mongolia found no expected signs of hydration. Modeling of the lithosphere–asthenosphere system in Central Mongolia by joint inversion of the body wave receiver functions and surface wave dispersion curves reveals a very thin lithospheric lid beneath Khangai and a thick layered asthenosphere to a depth of 200 km with a lithospheric inclusion between low-velocity layers.
Full Text

About the authors
L. P. Vinnik
Shmidt Institute of Physics of the Earth, Russian Academy of Sciences
Author for correspondence.
Email: vinnik@ifz.ru
Russian Federation, Moscow
L. L. Delitsyn
Shmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: vinnik@ifz.ru
Russian Federation, Moscow
L. I. Makeeva
Shmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: mak@ifz.ru
Russian Federation, Moscow
S. I. Oreshin
Shmidt Institute of Physics of the Earth, Russian Academy of Sciences
Email: vinnik@ifz.ru
Russian Federation, Moscow
References
- Винник Л.П., Орешин С.И., Макеева Л.И., Мордвинова В.В., Цыдыпова Л.Р. Структура мантии и процессы в переходной зоне Байкальской рифтовой зоны // Физика Земли. 2022. № 6. С. 3–11.
- Дэннис Дж., Шнабель Р. Численные методы безусловной оптимизации и решения нелинейных уравнений. М.: Мир. 1988. 440 с.
- Мордвинова В.В., Дешам А., Дугармаа Т., Девершер Ж., Улзийбат М., Саньков В.А., Артемьев А.А., Перро Ж. Исследование скоростной структуры литосферы на Монголо-Байкальском трансекте 2003 по обменным SV-волнам // Физика Земли. 2007. № 2. С. 21–32.
- Bercovici D., Karato S. Whole-mantle convection and the transition-zone water filter // Nature. 2003. V. 425. P. 39–44.
- Berkhout A.J. Least-squares inverse filtering and wavelet deconvolution // Geophysics. 1977. V. 42(7). P. 1369–1383.
- Biswas N.N. Earth-flattening procedure for the propagation of Rayleigh wave // Pure Appl. Geophys. 1972. V. 96. P. 61–74.
- Chen M., Niu F., Liu Q., Tromp J. Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography // Geoph. Res. Lett. 2015. V. 42(17). P. 6967–6974.
- Dueker K.G., Sheehan A.F. Mantle discontinuity structure from midpoint stacks of converted P to S waves across the Yellowstone hotspot track // J. Geophys. Res. 1997. V. 102. P. 8313–8327.
- Feng L. High-resolution crustal and uppermost mantle structure beneath Central Mongolia from Rayleigh waves and receiver functions // J. Geophys. Res: Solid Earth. 2021. V. 126 (4). doi: 10.1029/2020JB021161
- Fukao Y., Obayashi M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity // J. Geophys.Res. 2013. V. 118. P. 5920–5938.
- Haskell N.A. Crustal reflection of plane P and SV waves // J. Geophys. Res. 1962. V. 67(12). P. 4751–4767.
- He J., Xu M., Wu Q., Zhang F. Hydrous melting Driven upwelling from the mantle transition zone in the Mongolia Plateau revealed by receiver function analysis // JGR Solid Earth. 2022. doi: 10.1029/2022JB024905
- Ivanov A.V., Demonterova E.I., He H., Perepelov A.B., Travin A.V., Lebedev V.A. Volcanism in the Baikal-rift: 40 years of active-versus-passive model discussion // Earth-Science Reviews. 2015. V. 148. P. 18–43.
- Kennett B.L.N., Engdahl E.R. Traveltimes for global earthquake location and phase identification // Geoph. J. Int. 1991. V. 105 (2). P. 129–455.
- Kraft H.A., Vinnik L., Thybo H. Mantle transition zone beneath central-eastern Greenland: possible evidence for a deep tectosphere from receiver functions // Tectonophysics. 2018. V. 728–729. P. 34–40.
- Laske G., Masters G., Ma Z., Pasyanos M. Update on CRUST1.0—A 1-degree Global Model of Earth’s crust // Geophys. Res. Abs. 2012. V.14. EGU2012-3743-1.
- Meltzer A., Stachnik J. C., Sodnomsambuu D., Munkhuu U., Tsagaan B., Dashdondog M., Russo R. The Central Mongolia seismic experiment: Multiple applications of temporary broadband seismic arrays // Seismological Research Letters. 2019. V. 90(3). P. 1364–1376.
- Molnar P., Tapponnier P. Cenozoic tectonics of Asia: effects of a continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision // Science. 1975. V. 189 (4201). P. 419–426.
- Pasyanos M.E., Masters T.G., Laske G., Ma Zh. LITHO1.0: An updated crust and lithospheric model of the Earth // J. Geophys. Res.: Solid Earth. 2014. V. 119(3). P. 2153–2173.
- Rasskazov S.V. Magmatism related to Eastern Siberia rift system and the geodynamics // Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine. 1994. V. 18 (2). P. 437–452.
- Revenaugh J., Sipkin S.A. Seismic evidence for silicate melt atop the 410-km discontinuity // Nature. 1994. V. 369. P. 474–476. doi: 10.1038/369474a0.
- Shen Y., Blum J. Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa // Geophys. Res.Lett. 2003. V. 30(18). doi: 10.1029/2003GL017991
- Shen W., Ritzwoller M.H., Kang D., Kim Y., Lin F.-C., Ning J., Wang W., Zheng Y., Zhou L. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion // Geophys. J. Int. 2016. V. 206(2). P. 954–979. doi: 10.1093/gji/ggw175
- Sun M., Gao S.S., Liu K.H., Fu X. Upper mantle and mantle transition zone thermal and water content anomalies beneath NE Asia: Constraints from receiver function imaging of the 410 and 660 km discontinuities // Earth Planet. Sci. Lett. 2020. V. 532. doi: 10.1016/j.epsl.2019.116040
- Tian L., Zhao J., Liu W., Liu L., Liu H., Du J. Effect of iron on high pressure elasticity of hydrous wadsleyite and ringwoodite by first-principles simulation // High Pressure Research. 2012. V. 32 (3). P. 385–395.
- Vinnik L., Farra V. Subcratonic low-velocity layer and flood basalts // Geoph. Res. Lett. 2002. V. 29(4). doi: 10.1029/2001GL014064
- Vinnik L., Farra V. Low S velocity atop the 410-km discontinuity and mantle plumes // Earth and Planetary Science Letters. 2007. V. 262 (3-4). P. 398–412.
- Zhao H., Wang P., Huang Z. Lithospheric structures beneath the western Mongolian Plateau: Insight from S wave receiver function // Journal of Asian Earth Sciences. 2021. V. 212. Doi: 10.1016/ j. jseaes.2021.104733
- Wang X., Wu H., Wang H., Wu B., Huang, Z. Rayleigh wave tomography of central and southern Mongolia // Tectonophysics. 2022. V. 836. Doi: 10.1016/ j.tecto.2022.229426
- Wu H., Huang Zh., Zhao D. Deep structure beneath the southwestern flank of the Baikal rift zone and adjacent areas // Phys.Earth Planet.Int. 2021. V. 310. doi: 10.1016/j.pepi.2020.106616
- Zorin Yu.A., Kozhevnikov V.M., Novoselova M.R., Turutanov E.Kh. Thickness of the lithosphere beneath the Baikal rift zone and adjacent regions // Tectonophysics. 1989. V. 168. P.327–347.
- Zorin Y., Turutanov E., Mordvinova V., Kozhevnikov V., Yanovskaya T., Treussov A. The Baikal rift zone: the effect of mantle plumes on older structure // Tectonophysics. 2003. V. 371. № 1–4. P. 153–173.
Supplementary files
