Nature of Anisotropic Response of Fluid Saturated Medium to Surface Seismic Wave Propagation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Monitoring of pore pressure or water level changes in observation wells shows significant variations both during the passage of P and Rayleigh waves and during the passage of S and Love waves. Recent borehole measurements have shown an azimuthal dependence of pore pressure variations on the stress orientation and strike direction of the fault zone. In the active fault zone, the fracture-induced anisotropy corresponds to the preferred orientation of microcracks and other discontinuities in the medium. This paper is devoted to the development of a modified Skempton equation for a quantitative description of surface wave induced pore pressure variations in a reservoir, related to the orientation and principal values of the stress tensor and rock damage (fracturing). The developed relationships allow the azimuthal dependence of the pore pressure response to be described by a dimensionless parameter defined as the ratio of the amplitudes of the pressure variations caused by the shear component and the volumetric strain. According to the proposed theoretical model, the maximum poroelastic response of the reservoir to the passage of a seismic wave is manifested in the case of subparallelism of the directions of predominant rock fracturing and maximum horizontal stress. Pore pressure monitoring data from the Arbuckle wastewater disposal reservoir (Oklahoma, USA) are used to verify the proposed theoretical model. It is shown that the observed diversity of pore pressure response in wells located in the vicinity of a fault zone intersecting the reservoir to the passage of seismic waves from seismic events at different distances is described with high accuracy by the developed model.

About the authors

I. A Panteleev

Institute of Continuous Media Mechanics UB RAS; PRFC UB RAS

Email: pia@icmm.ru
Perm, Russia

D. V Lozhkin

Institute of Continuous Media Mechanics UB RAS; PRFC UB RAS

Email: lozhkin.d@icmm.ru
Perm, Russia

V. Lyakhovsky

Geological Survey of Israel

Email: vladimir.lyakhovsky@gmail.com
Jerusalem, Israel

E. Shalev

Geological Survey of Israel

Email: eyal2shalev@gmail.com
Jerusalem, Israel

References

  1. Барабанов В.Л., Гриневский А.О., Калачев А.А., Савин И.В. Частотная характеристика системы скважина - водоносный горизонт по данным наблюдений за уровнем подземных вод // Изв. АН СССР. Сер. Физика Земли. 1988. № 3. С. 41-50.
  2. Вартанян Г.С. Геодинамический мониторинг и прогноз сильных землетрясений // Отечественная геология. 2002. № 2. С. 62-65.
  3. Вартанян Г.С. Глобальная эндодренажная система: некоторые флюидофизические механизмы геодинамических процессов // Геодинамика и тектонофизика. 2019. Т. 10. № 1. С. 53-78.
  4. Виноградов С.Д., Троицкий П.А., Соловьева М.С. Влияние трещиноватости и напряжений в среде на параметры распространяющихся упругих волн // Изв. АН СССР. Сер. Физика Земли. 1989. № 4. С. 42-56.
  5. Виноградов С.Д., Троицкий П.А., Соловьева М.C. Изучение распространения упругих волн в среде с ориентированной трещиноватостью // Физика Земли. 1992. № 5. С. 14-34.
  6. Волейшо В.О., Куликов Г.В., Круподерова О.Е. Геодинамический режим Камчатско-Курильского и Сахалинского сейсмоактивного региона по данным ГГД-мониторинга // Разведка и охрана недр. 2007. № 5. С. 20-24.
  7. Горбунова Э.М., Беседина А.Н., Виноградов Е.А., Свинцов И.С. Реакция подземных вод на прохождение сейсмических волн от землетрясений на примере ГФО “Михнево” // Динамические процессы в геосферах. Вып. 7. М.: ГЕОС. 2015. С. 60-67.
  8. Егоркин А.В., Егоркин А.А. Анизотропия скоростей поперечных волн в консолидированной коре Сибири // Изв. АН СССР. Сер. Физика Земли. 1986. № 11. С. 106- 112.
  9. Киссин И.Г. Флюиды в земной коре. Геофизические и тектонические аспекты. М.: Наука. 2015. 328 с.
  10. Копылова Г.Н., Болдина С.В. Гидрогеосейсмические вариации уровня воды в скважинах Камчатки. Петропавловск-Камчатский: ООО “Камчатпресс”. 2019. 144 с.
  11. Копылова Г.Н., Болдина С.В. Эффекты сейсмических волн в изменениях уровня воды в скважине: экспериментальные данные и модели // Физика Земли. 2020. № 4. С. 102-122.
  12. Копылова Г.Н., Болдина С.В. Гидрогеологические предвестники землетрясений и вулканических активизаций по данным наблюдений в скважинах полуострова Камчатка // Науки о Земле и недропользование. Гидрогеология и инженерная геология. 2021. Т. 44. № 2. С. 141- 150.
  13. Пантелеев И.А., Ляховский В.А. Ориентация трещиноватости в хрупком твердом теле при традиционном трехосном сжатии // Изв. РАН. Механика твердого тела. 2022. № 5. С. 70-92.
  14. Пантелеев И.А., Ляховский В., Мубассарова В.А., Карев В.И., Шевцов Н.И., Шалев Э. Тензорная компакция пористых пород: теория и экспериментальная верификация // Записки Горного института. 2022. Т. 254. С. 234-243.
  15. Alt R.C., Zoback M.D. In situ stress and active faulting in Oklahoma // Bull. seism. Soc. Am. 2017. V. 107. P. 216-228. Barbour A.J., Beeler N.M. Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir // Earth Planetary Physics. 2021. V. 5. № 6. P. 547-558.
  16. Biot M.A. General theory of three-dimensional consolidation // Journal of Applied Physics. 1941. V. 12. № 2. P. 155-164.
  17. Bonner B.P. Shear wave birefringence in dilating granite // Geophysical Research Letters. 1974. V. 1. № 5. P. 217-220. Browning J., Meredith P.G., Stuart C., Harland S., Healy D., Mitchell T.M. A directional crack damage memory effect in sandstone under true triaxial loading // Geophysical Research Letters. 2018. V. 45. № 14. P. 6878-6886.
  18. Burbey T.J. Fracture characterization using Earth tide analysis // Journal of Hydrology. 2010. V. 380. P. 237-246.
  19. Chesnokov E.M., Zatsepin S.V. Effects of applied stress on effective elastic anisotropy in cracked solids // Geophys. J.Int. 1991. V. 107. P. 563-569.
  20. Crampin S. Geological and industrial implications of extensive-dilatancy anisotropy // Nature. 1987. V. 328. № 6130. P. 491-496.
  21. Crampin S. Suggestions for a consistent terminology for seismic anisotropy // Geophys. Prospect. 1989. V. 37. № 7. P. 753-770.
  22. Cutillo P.A., Bredehoeft J.D. Estimating Aquifer Properties from the Water Level Response to Earth Tides // Ground Water. 2011. V. 49. № 4. P. 600-610.
  23. Doan M.L., Brodsky E.E., Priour R., Signer C. Tydal analysis of borehole pressure - A tutorial. H.: Schlumberger Research report. 2006. 62 р.
  24. Hamiel Y., Lyakhovsky V., Agnon A. Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks // Geophys. J.Int. 2004. V. 156. P. 701-713.
  25. Hamiel Y., Lyakhovsky V., Agnon A. Rock dilation, nonlinear deformation, and pore pressure change under shear // Earth Planet. Sci. Lett. 2005. V. 237. P. 577-589.
  26. Henkel D.J. The shear strength of saturated remoulded clay: Proc. Res. Conf. Shear Strength Cohesive Soils Boulder, Color. 1960. Р. 533-540.
  27. Henkel D.J., Wade N.H. Plane strain tests on a saturated remoded clay // J. Soil Mech. Found. Div. 1966. V. 92. № 6. P. 67-80.
  28. Hsieh P., Bredehoeft J., Farr J. Determination of aquifer transmissivity from earth tide analysis // Water Resources Res. 1987. V. 23. P. 1824-1832.
  29. Kitagawa Y., Itaba S., Matsumoto N., Koizumi N. Frequency characteristics of the response of water pressure in a closed well to volumetric strain in the high frequency domain // J. Geophys. Res. 2011. V. 116. № B08301. Р. 1-12.
  30. Kolawole F., Johnston C.S., Morgan C.B., Chang J.C., Marfurt K.J., Lockner D.A., Reches Z., Carpenter B.M. The susceptibility of Oklahoma’s basement to seismic reactivation // Nat. Geosci. 2019. V. 12. P. 839-844.
  31. Kopylova G., Boldina S. Preseismic groundwater ion content variations: observational data in flowing wells of the Kamchatka peninsula and conceptual model // Minerals. 2021. V. 11. № 7. P. 731.
  32. Lai G., Ge H., Wang W. Transfer functions of the well-aquifer systems response to atmospheric loading and Earth tide from low to high-frequency band // J. Geophys. Res. Solid Earth. 2013. V. 118. Р. 1904-1924.
  33. Leary P.C., Crampin S., McEvilly T.V. Seismic fracture anisotropy in the Earth’s crust: An overview // J. geophys. Res. 1990. V. 95. P. 11105-11114.
  34. Lockner D.A., Byerlee J.D., Kuksenko V., Ponomarev A., Sidorin A. Chapter 1 observations of quasistatic fault growth from acoustic emissions // Int. Geophys. 1992. V. 51. P. 3-31. Lockner D.A., Byerlee J.D. Dilatancy in hydraulically isolated faults and the suppression of instability // Geophys. Res. Lett. 1994. V. 21. P. 2353-2356.
  35. Lockner D.A., Stanchits S.A. Undrained poroelastic response of sandstones to deviatoric stress change // J. geophys. Res. 2002. V. 107. P. 2353.
  36. Lockner D.A., Walsh J.B., Byerlee J.D. Changes in seismic velocity and attenuation during deformation of granite // J. geophys. Res. 1977. V. 82. P. 5374-5378.
  37. Lutzky H., Lyakhovsky V., Kurzon I., Shalev E. Hydrological response to the Sea of Galilee 2018 seismic swarm // J. Hydrol. 2020. V. 582. P. 124499.
  38. Lyakhovsky V., Panteleev I., Shalev E., Browning J., Mitchell T.M., Healy D., Meredith P.G. A new anisotropic poroelasticity model to describe damage accumulation during cyclic triaxial loading of rock // Geophys. J.Int. 2022a. V. 230. P. 179-201.
  39. Lyakhovsky V., Shalev E., Panteleev I., Mubassarova V.Compaction, strain, and stress anisotropy in porous rocks // Geomech. Geophys. Geo-Energy Geo-Resources. 2022b. V. 8. P. 1-17.
  40. Miller V., Savage M. Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu // Science. 2001. V. 293. P. 2231-2233.
  41. Nur A. Effects of stress on velocity anisotropy in rocks with cracks // J. geophys. Res. 1971. V. 76. P. 2022-2034.
  42. Nur A., Simmons G. Stress-induced velocity anisotropy in rock: an experimental study // J. geophys. Res. 1969. V. 74. P. 6667-6674.
  43. Paterson M.S., Wong T.F. Experimental Rock Deformation: The Brittle Field. B. : Springer. 2005. 348 p.
  44. Peng Z., Ben-Zion Y. Systematic analysis of crustal anisotropy along the Karadere-Düzce branch of the North Anatolian fault // Geophys. J.Int. 2004. V. 159. P. 253-274.
  45. Rahi K.A., Halihan T. Identifying aquifer type in fractured rock aquifers using harmonic analysis // Ground water. 2013. V. 51. № 1. P. 76-82.
  46. Reches Z., Lockner D. Nucleation and growth of faults in brittle rocks // J. Geophys. Res. Solid Earth. 1994. V. 99. № B9. P. 18159-18173.
  47. Renard F., McBeck J., Kandula N., Cordonnier B., Meakin P., Ben-Zion Y. Volumetric and shear processes in crystalline rock approaching faulting // Proc. Natl. Acad. Sci. 2019. V. 116. P. 16234-16239.
  48. Sayers C.M. Stress-dependent elastic anisotropy of sandstones // Geophys. Prospect. 2002. V. 50. P. 85-95.
  49. Schmitt D.R., Zoback M.D. Diminished pore pressure in low-porosity crystalline rock under tensional failure: apparent strengthening by dilatancy // J. geophys. Res. 1992. V. 97. P. 273-288.
  50. Shalev E., Kurzon I., Doan M.-L., Lyakhovsky V. Sustained water level changes caused by damage and compaction induced by teleseismic earthquakes // J. geophys. Res. 2016a. V. 121. P. 4943-4954.
  51. Shalev E., Kurzon I., Doan M.-L., Lyakhovsky V. Water-level oscillations caused by volumetric and deviatoric dynamic strains // Geophys. J.Int. 2016b. V. 204. P. 841-851.
  52. Skempton A.W. The pore-pressure coefficients A and B // Geotechnique. 1954. V. 4. P. 143-147.
  53. Stanchits S., Vinciguerra S., Dresen G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite // Pure appl. Geophys. 2006. V. 163. P. 975-994.
  54. Wang C.-Y., Chia Y., Wang P., Dreger D. Role of S waves and Love waves in coseismic permeability enhancement // Geophys. Res. Lett. 2009. V. 36. № 9.
  55. Wang C.-Y., Manga M. Earthquakes and Water. B.: SpringerVerlag. 2010. 228 p.
  56. Wang H.F. Effects of deviatoric stress on undrained pore pressure response to fault slip // J. geophys. Res. 1997. V. 102. P. 17943-17950.
  57. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydro geology. P.: Princeton University Press. 2000. 304 p.
  58. Winterstein D.F. Velocity anisotropy terminology for geophysicists // Geophysics. 1990. V. 55. P. 1070-1088.
  59. Xue L., Brodsky E.E., Erskine J., Fulton P.M., Carter R. A permeability and compliance contrast measured hydrogeologically on the San Andreas Fault // Geochemistry, Geophysics, Geosystems. 2016. V. 17 P. 858-871.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».