Reconstruction of the Spatial Distribution of Filtration Properties of Heterogeneous Geologic Media Based on Variations of Microseismicity Resulting from Fluid Injection

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Determining the properties of heterogeneous reservoirs based on microseismic evolution data is an important task in field development. Analyzing the propagation of microseismic events occurring during fluid injection/withdrawal provides valuable information about permeability and stress state of the reservoir. In this paper, we consider the inverse problem of determining reservoir filtration properties from microseismic event propagation data. For this purpose, the influence of various geological factors on the distribution of microseismic event sources is investigated. Machine learning methods were used to identify correlations between geologic model parameters and microseismicity evolution. Due to the insufficient variability of in-situ data, an artificial database of catalogs of microseismic events containing the coordinates of sources and their occurrence times was created to train the model. For this purpose, numerical modeling of fluid injection and generation of microseismic events in synthetic models of permeable media with different geological structure was carried out. Thus, a comprehensive approach to the restoration of filtration properties of heterogeneous reservoirs from microseismicity evolution data using machine learning methods is proposed. The proposed methodology can be applied to optimize field development, improve the efficiency of fluid extraction and reduce the risks associated with the occurrence of undesirable anthropogenic seismic activity.

Авторлар туралы

E. Novikova

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: e.novikova@idg.ras.ru
Moscow, Russia

N. Barishnikov

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Email: baryshnikov.na@idg.ras.ru
Moscow, Russia

S. Turuntaev

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Moscow, Russia

M. Trimonova

Sadovsky Institute of Geospheres Dynamics of Russian Academy of Sciences

Moscow, Russia

Әдебиет тізімі

  1. Адушкин В. В., Турунтаев С. Б. Техногенная сейсмичность - индуцированная и триггерная. М.: ИДГ РАН. 2015a. 364 с.
  2. Баренблатт Г. И., Ентов В. М., Рыжик В. М. Движение жидкостей и газов в природных пластах. М.: Недра. 1984. 211 с.
  3. Dichiarante A.M., Langet N., Bauer R.A., Goertz-Allmann B.P., Williams-Stroud S.C., Kühn D., Oye V., Greenberg S.E., Dando B.D.E.Identifying geological structures through microseismic cluster and burst analyses complementing active seismic interpretation // Tectonophysics. 2021. Т. 820. С. 229107.
  4. Jessell M., Guo J., Li Y., Lindsay M., Scalzo R., Giraud J., Pirot G., Cripps E., Ogarko V.Into the Noddyverse: a massive data store of 3D geological models for machine learning and inversion applications // Earth Syst Sci Data. 2022. Т. 14. № 1. С. 381-392.
  5. Ritz V., Rinaldi A. P., Wiemer S. Transient evolution of the relative size distribution of earthquakes as a risk indicator for induced seismicity // Commun Earth Environ. 2022. Т. 3.
  6. Scibek J. Multidisciplinary database of permeability of fault zones and surrounding protolith rocks at world-wide sites // Sci Data. 2020. Т. 7. № 1. С. 95.
  7. Shapiro S. Fluid-Induced Seismicity. Cambridge: Cambridge University Press. 2015.
  8. Turuntaev S., Eremeeva E., Zenchenko E. Laboratory study of microseismicity spreading due to pore pressure change // J. Seismol. 2013. Т. 17.
  9. Vaswani A., Shazeer N.M., Parmar N., Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. Attention is all you need. Adv Neural Inf Process Syst. 2017. Т. 2017-Decem. № Nips. С. 5999-6009.
  10. Zoback M. D. Managing the seismic risk posed by wastewater disposal // Earth Magazine. 2012. С. 38-43.
  11. Zwicker D. A Python package for solving partial differential equations // J. Open Source Softw. 2020. Т. 5. № 48. С. 2158. idglgfd/permeability_reconstruction_network [Электронный ресурс]. URL: https://github.com/idglgfd/permeability_reconstruction_network (дата обращения: 15.08.2024).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».