Porous Materials Prepared by Sintering Basalt Fiber with CuS and ZrO2 Additions and Containing a Rigid System of Microfiltration Transport Pores

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Porous ceramic materials have been prepared from BS16-6-76 chopped basalt fiber with CuS and ZrO2 additions by granulation, pressing, and subsequent sintering in air. Computer-controlled X-ray diffraction measurements have been used to carry out profile analysis and assess the qualitative and relative quantitative phase compositions of the materials. We have identified the sequence of phase transformations in the basalt fiber and confirmed that fiber crystallization during cooling after sintering begins with the formation of aluminosilicate spinel nuclei, which act as crystallization centers and become incorporated into the structure of orthoclase. The last to form in the phase hierarchy is a low-molecular-weight Fe-containing phase, namely, hematite (α-Fe2O3), built in a framework silicate of isomorphous series. The surface of the basalt fiber in the sintered material modified with copper sulfide and zirconium oxide additions has been shown to be covered with ~500-nm inclusions of a crystalline phase.

About the authors

S. M. Azarov

Belarussian National Technical University

Email: azarov@bntu.by
220013, Minsk, Belarus

E. E Petyushik

State Research and Production Powder Metallurgy Association

Email: azarov@bntu.by
220005, Minsk, Belarus

E. M. Shishonok

Belarussian National Technical University

Email: azarov@bntu.by
220013, Minsk, Belarus

S. V Zlotskii

Belarussian State University

Email: azarov@bntu.by
220030, Minsk, Belarus

A. A. Drobysh

Belarussian National Technical University

Email: azarov@bntu.by
220013, Minsk, Belarus

A. V. Drozd

State Research and Production Powder Metallurgy Association

Author for correspondence.
Email: azarov@bntu.by
220005, Minsk, Belarus

References

  1. Азаров С.М. Условия формирования композиционных пористых материалов повышенной прочности на основе алюмосиликатных порошков и базальтовых волокон. Сообщение 1 // Порошковая металлургия: респ. межведомств. сб. науч. трудов. Минск: Беларус. навука, 2018. Вып. 41. С. 90−94.
  2. Петюшик Е.Е., Азаров С.М., Дробыш А.А., Маркова Л.В., Гамзелева Т.В. Структура и свойства пористых композиционных материалов на основе порошков алюмосиликатов и базальтового волокна // Порошковая металлургия: респ. межведомств. сб. науч. трудов. Минск: Беларус. навука, 2018. Вып. 41. С. 147−152.
  3. Petyushik E., Azarau S., Azarava T., Besarab S., Drobysh A., Sauka J. Investigation of the Structure and Properties of Ceramic Materials with a Rigid System of Microfiltration Transport Pores Based on Basalt Fibers // J. Metastable Nanocryst. Mater. 2022. V. 34. P. 13–18.
  4. Вусихис А.С., Сергеева С.В., Гуляева Р.И., Рябов В.В., Ченцов В.П. Структурно-чувствительные свойства расплавов и термические свойства стекол системы B2O3–CaO–Al2O3–PbO // Неорган. материалы. 2022. Т. 58. № 1. С. 102–109. https://doi.org/10.31857/S0002337X22010146
  5. Хисамов Р.С. Высокоэффективные технологии освоения нефтяных месторождений. М.: Недра, 2004. 638 с.
  6. Томина Н.Н., Пимерзин А.А., Моисеев И.К. Сульфидные катализаторы гидроочистки нефтяных фракций // Росс. хим. журн. 2008. Т. LII. № 4. С. 41–52.
  7. Каюкова Г.П., Феоктистов Д.А., Вахин А.В., Косачев И.П., Романов Г.В., Михайлова А.Н., Хисамов Р.С. Преобразования тяжелой нефти в углекислотной среде с использованием природного катализатора – дисульфида железа // Нефтяное хозяйство. 2017. № 4. С. 100–102. https://doi.org/10.24887/0028-2448-2017-4-100-102
  8. Шишонок Е.М., Стидс Дж., Пыск А.В., Мосунов Е.И., Абдуллаев О.Р., Якунин А.С., Жигунов Д.М. Структурные исследования микропорошков кубического нитрида бора, активированного редкоземельными элементами // Порошковая металлургия. 2011. № 11/12. С. 95–114.
  9. Абросимова Г.Е., Аронин А.С., Холстинина Н.Н. Об определении доли кристаллической фазы в аморфно-кристаллических сплавах // Физика твердого тела. 2010. Т. 52. Вып. 3. С. 417–423.
  10. Ковалев Д.Ю. Динамическая рентгенография материалообразующих процессов горения: Дис. … докт. физ.-мат. наук. Черноголовка. 2021. 249 с. [Электронный ресурс]. − Режим доступа: https://www.dissercat. com/content/dinamicheskaya-rentgenografiya-materialoobrazuyushchikh-protsessov-goreniya. − Дата доступа: 15.03.2023
  11. Абызов А.М. Рентгенодифракционный анализ поликристаллических веществ. СПб: СПбГТИ (ТУ), 2008. 95 с.
  12. Энциклопедия неорганических материалов. Киев: Главная редакция украинской советской энциклопедии, 1977. Т. 1. 840 с.
  13. Стрелов К.К. Структура и свойства огнеупоров. М.: Металлургия, 1982. 208 с.
  14. Karamanov A., Pelino M. Crystallization Phenomena in Iron-Rich Glasses // J. Non-Cryst. Solids. 2001. V. 281. P. 139–151. https://doi.org/10.1016/S0022-3093(00)00436-1
  15. Джигирис Д.Д., Махова М.Ф. Основы производства базальтовых изделий. М.: Теплоэнергетика, 2002. 412 с.
  16. Кручинин Ю.Д., Белоусов Ю.Л. Образование шпинелидов в пироксеновых стеклах, содержащих окислы железа // Физика и химия стекла. 1976. Т. 2. Вып. 3. С. 242–245.
  17. Манылов М.С., Гутников С.И., Липатов Я.В., Похолок К.В., Филимонов Д.С., Лазоряк Б.И. Кристаллизация базальтовых непрерывных волокон в окислительной атмосфере // Физика и химия стекла. 2012. Т. 38. № 4. С. 565–573.
  18. Gutnikov S.I., Manylov M.S., Lipatov Ya.V., Lazoryak B.I. Pokholok K.V. Effect of the Reduction Treatment on the Basalt Continuous Fiber Crystallization Properties // J. Non-Cryst. Solids. 2013. V. 368. P. 45–50. https://doi.org/10.1016/j.jnoncrysol.2013.03.007
  19. Augis J.A., Bennett J.E. Calculation of the Avrami Parameters for Heterogeneous Solid State Reactions Using a Modification of the Kissinger Method // J. Thermal. Anal. 1978. V. 13. P. 283–292. https://doi.org/10.1007/bf01912301
  20. Karamanov A., Pisciella P., Pelino M. The Crystallisation Kinetics of Iron-Rich Glass in Different Atmospheres // J. Eur. Ceram. Soc. 2000. V. 20. P. 2233–2237. https://doi.org/10.1016/S0955-2219(00)00077-7
  21. Пух В.П., Байкова Л.Г., Киреенко М.Ф., Тихонова Л.В., Казанникова Т.П., Синани А.Б. Атомная структура и прочность неорганических стекол // Физика твердого тела. 2005. Т. 47. Вып. 5. С. 850–855.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (199KB)
4.

Download (226KB)
5.

Download (227KB)
6.

Download (2MB)
7.

Download (743KB)

Copyright (c) 2023 С.М. Азаров, Е.Е. Петюшик, Е.М. Шишонок, С.В. Злоцкий, А.А. Дробыш, А.В. Дрозд

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».