Получение и электрофизические свойства сэндвич-структур на основе “чернил” из квантовых точек PbS, покрытых тиогликолевой кислотой, для ИК-фотодетекторов
- Authors: Chirkov K.S.1, Smirnov M.S.1, Ovchinnikov O.V.1, Khokhlov V.Y.1, Latyshev A.N.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 61, No 5–6 (2025)
- Pages: 275-283
- Section: Articles
- URL: https://journal-vniispk.ru/0002-337X/article/view/308709
- DOI: https://doi.org/10.31857/S0002337X25030023
- EDN: https://elibrary.ru/lbaigo
- ID: 308709
Cite item
Abstract
About the authors
K. S. Chirkov
Voronezh State UniversityUniversitetskaya pl., 1, Voronezh, 394006 Russia
M. S. Smirnov
Voronezh State University
Email: smirnov_m_s@mail.ru
Universitetskaya pl., 1, Voronezh, 394006 Russia
O. V. Ovchinnikov
Voronezh State UniversityUniversitetskaya pl., 1, Voronezh, 394006 Russia
V. Y. Khokhlov
Voronezh State UniversityUniversitetskaya pl., 1, Voronezh, 394006 Russia
A. N. Latyshev
Voronezh State UniversityUniversitetskaya pl., 1, Voronezh, 394006 Russia
References
- Xu G., Zeng S., Swihart M., Yong K.-T., Prasad P. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine // Chem. Rev. 2016. V. 116. P. 12234–12327. https://doi.org/10.1021/acs.chemrev.6b00290
- Zebibula A., Alifu N., Xia L., Sun C., Yu X., Xue D., Liu L., Li G., Qian J. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging // Adv. Funct. Mater. 2018. V. 28. 1703451. https://doi.org/10.1002/adfm.201703451
- Yin X., Zhang C., Guo Y., Yang Y., Xing Y., Que W. PbS QD-based Photodetectors: Future-Oriented Near-Infrared Detection Technology // J. Mater. Chem. C. 2021. V. 9. P. 417–438. https://doi.org/10.1039/D0TC04612D
- Scanlon W.W. Recent Advances in the Optical and Electronic Properties of PbS, PbSe, PbTe and Their Alloys // J. Phys. Chem. Solids. 1959. V. 8. P. 423–428. https://doi.org/10.1016/0022-3697(59)90379-8
- Warner J.H., Thomsen E., Watt A.R., Heckenberg N.R., Rubinsztein-Dunlop H. Time-resolved Photoluminescence Spectroscopy of Ligand-Capped PbS Nanocrystals // Nanotechnology. 2005. V. 16. P. 175–179. https://doi.org/10.1088/0957-4484/16/2/001
- Torres-Gomez N., Garcia-Gutierrez D.F., Lara-Canche A.R., Triana-Cruz L., Arizpe-Zapata J.A., Garcia-Gutierrez D.I. Absorption and Emission in the Visible Range by Ultra-Small PbS Quantum Dots in the Strong Quantum Confinement Regime with S-terminated Surfaces Capped with Diphenylphosphine // J. Alloys Compd. 2021. V. 860. 158443. https://doi.org/10.1016/j.jallcom.2020.158443
- Kim D., Kuwabara T., Nakayama M. Photoluminescence Properties Related to Localized States in Colloidal PbS Quantum Dots // J. Lumin. 2006. V. 119–120. P. 214–218. https://doi.org/10.1016/j.jlumin.2005.12.033
- Gilmore R.H., Liu Y., Shcherbakov-Wu W., Dahod N.S., Lee E.M.Y., Weidman M.C., Li H., Jean J., Bulovic V., Willard A.P., Grossman J.C., Tisdale W.A. Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids // Matter. 2019. V. 1. № 1. P. 250–265. https://doi.org/10.1016/j.matt.2019.05.015
- Nakashima S., Hoshino A., Cai J., Mukai K. Thiol-stabilized PbS Quantum Dots with Stable Luminescence in the Infrared Spectral Range // J. Cryst. Growth. 2013. V. 378. P. 542–545. https://doi.org/10.1016/j.jcrysgro.2012.11.024
- Loiko P.A., Rachkovskaya G.E., Zacharevich G.B., Yumashev K.V. Wavelength-tunable Absorption and Luminescence of SiO2–Al2O3–ZnO–Na2O–K2O–NaF Glasses with PbS Quantum Dots // J. Lumin. 2013. V. 143. P. 418–422. https://doi.org/10.1016/j.jlumin.2013.05.057
- Kolobkova E., Lipatova Z., Abdrshin A., Nikonorov N. Luminescent Properties of Fluorine Phosphate Glasses Doped with PbSe and PbS Quantum Dots // Opt. Mater. 2017. V. 65. P. 124–128. https://doi.org/10.1016/j.optmat.2016.09.033
- Weidman M.C., Beck M.E., Hoffman R.S., Prins F., Tisdale W.A. Monodisperse, Air-Stable PbS Nanocrystals Via Precursor Stoichiometry Control // ACS Nano. 2014. V. 8. P. 6363–6371. https://doi.org/10.1021/nn5018654
- Wang R., Shang Y., Kanjanaboos P., Zhou W., Ning Z., Sargent E.H. Colloidal Quantum Dot Ligand Engineering for High Performance Solar Cells // Energy Environ. Sci. 2016. V. 9. P. 1130–1143. https://doi.org/10.1039/C5EE03887A
- Carey G.H., Abdelhady A.L., Ning Z., Thon S.M., Bakr O.M., Sargent E.H. Colloidal Quantum Dot Solar Cells // Chem. Rev. 2015. V. 115. P. 12732–12763. https://doi.org/10.1021/acs.chemrev.5b00063
- Boles M.A., Ling D., Hyeon T., Talapin D.V. The Surface Science of Nanocrystals // Nat. Mater. 2016. V. 15. P. 141–153. https://doi.org/10.1038/nmat4526
- Alharthi S.S., Alzahrani A., Razvi M.A.N., Badawi A., Althobaiti M.G. Spectroscopic and Electrical Properties of Ag2S/PVA Nanocomposite Films for Visible-Light Optoelectronic Devices // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 3878–3885. https://doi.org/10.1007/s10904-020-01519-4
- Ruiz D., del Rosal B., Acebron M., Palencia C., Sun C., Cabanillas-Gonzalez J., Lopez-Haro M., Hungria A.B., Jaque D., Juarez B.H. Ag/Ag2S Nanocrystals for high Sensitivity Near-Infrared Luminescence Nanothermometry // Adv. Funct. Mater. 2016. V. 27. 1604629. https://doi.org/10.1002/adfm.201604629
- Zamiri R., Abbastabar Ahangar H., Zakaria A., Zamiri G., Shabani M., Singh B., Ferreira J.M.F. The Structural and Optical Constants of Ag2S Semiconductor Nanostructure in the Far-Infrared // Chem. Cent. J. 2015. V. 9. № 1. 28. https://doi.org/10.1186/s13065-015-0099-y
- Law M., Luther J.M., Song Q., Hughes B.K., Perkins C.L., Nozik A.J. Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines // J. Am. Chem. Soc. 2008. V. 130 P. 5974–5985. https://doi.org/10.1021/ja800040c
- Pattantyus-Abraham A.G., Kramer I.J., Barkhouse A.R., Wang X., Konstantatos G., Debnath R., Levina L., Raabe I., Nazeeruddin M.K., Gratzel M. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells // ACS Nano. 2010. V. 4. P. 3374–3380. https://doi.org/10.1021/nn100335g
- Tang J., Kemp K.W., Hoogland S., Jeong K.S., Liu H., Levina L., Furukawa M., Wang X., Debnath R., Cha D. Colloidal-Quantum-Dot Photovoltaics Using Atomicligand Passivation // Nat. Mater. 2011. V. 10. P. 765–771. https://doi.org/10.1038/nmat3118
- Zhang H., Jang J., Liu W., Talapin D.V. Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands // ACS Nano. 2014. V. 8. P. 7359–7369. https://doi.org/10.1021/nn502470v
- Hu L., Lei Q., Guan X., Patterson R., Yuan J., Lin C.-H., Kim J., Gang X., Younis A., Wu X., Liu X., Wan T., Chu D., Wu T., Huang S. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells Via Chemical Binding // Adv. Sci. 2021. V. 8. 2003138. https://doi.org/10.1002/advs.202003138
- Parfenov P.S., Bukhryakov N.V., Onishchuk D.A., Babaev A.A., Sokolova A.V., Litvin A.P. Study of Charge Carrier Mobility in PBS Nanocrystal Layers Using Field-Effect Transistors // Semiconductors. 2022. V. 56. № 2. P. 175–181. https://doi.org/10.21883/SC.2022.02.53049.9734
- Lu K., Wang Y., Liu Z., Han L., Shi G., Fang H., Chen J., Ye X., Chen S., Yang F., Shulga A.G., Wu T., Gu M., Zhou S., Fan J., Loi M.A., Ma W. High-Efficiency PbS Quantum-Dot Solar Cells with Greatly Simplified Fabrication Processing Via “Solvent-Curing” // Adv. Mater. 2018. V. 30. 1707572 https://doi.org/10.1002/adma.201707572
- Xu J., Voznyy O., Liu M., Kirmani A.R., Walters G., Minur R., Abdelsamie M., Proppe A.H., Sarkar A., de Arquer F.P.G., Wei M., Sun B., Liu M., Ouelette O., Quintero-Bermudez R., Li J., Fan J., Quan L., Todorovic P., Tan H., Hoogland S., Kelley S.O., Stefik M., Amassian A., Sargent E.H. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids // Nat. Nanotech. 2018. V. 13. P. 456–462. https://doi.org/10.1038/s41565-018-0117-z
- Aqoma H., Jang S.-Y. Solid-State-Ligand-Exchange Free Quantum Dot Inkbased Solar Cells with an Efficiency of 10.9% // Energy Environ. Sci. 2018. V. 11. P. 1603–1609. https://doi.org/10.1039/C8EE00278A
- Wang Y., Liu Z., Huo N., Li F., Gu M., Ling X., Zhang Y., Lu K., Han Lu., Fang H., Shulga A.G., Xue Y., Zhou S., Yang F., Tang X., Zheng J., Loi M.A., Konstantatos G., Ma W. Room-Temperature Direct Synthesis of Semiconductive PbS Nanocrystal Inks for Optoelectronic Applications // Nat. Common. 2019. V. 10. 5136. https://doi.org/10.1038/s41467-019-13158-6
- Grevtseva I.G., Chirkov K.S., Ovchinnikov O.V., Smirnov M.S. Luminescence of Thioglycolic Acid-Passivated PbS Quantum Dots in the Presence of Potassium Iodide // Inorg. Mater. 2023. V. 59. № 10. P. 1045–1053. https://doi.org/10.1134/S0020168523100047
- Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen // Math.-phys. Klasse. 1918. V. 2. P. 98–100.
- Maskaeva L.N., Markov V.F., Voronin V.I., Pozdin A.V., Borisova E.S., Anokhina I.A. Structural Characteristics and Photoelectric Properties of Iodine-Doped PbS Films Produced by Chemical Deposition // Inorg. Mater. 2023. V. 59. № 4. P. 349–358. https://doi.org/10.1134/S0006297923040016
- Smirnov M.S., Ovchinnikov O.V. IR luminescence Mechanism in Colloidal Ag2S Quantum Dots // J. Lumin. 2020. V. 227. 117526. https://doi.org/10.1016/j.jlumin.2020.117526
- Grevtseva I.G., Ovchinnikov O.V., Smirnov M.S., Chirkov K.S. Trap State and Exciton Luminescence of Colloidal PbS Quantum Dots Coated with Thioglycolic Acid Molecules // Condens. Matter Interphases. 2023. V. 25. № 2. P. 182–189. https://doi.org/10.17308/kcmf.2023.25/11099
- Giansante C., Infante I. Surface Traps in Colloidal Quantum Dots: a Combined Experimental and Theoretical Perspective // J. Phys. Chem. Lett. 2017. V. 8. № 20. P. 5209–5215. https://doi.org/10.1021/acs.jpclett.7b02193
- Voznyy O., Thon S.M., Ip A.H., Sargent E.H. Dynamic trap Formation and Elimination in Colloidal Quantum Dots // J. Phys. Chem. Lett. 2013. V. 4. P. 987–992. https://doi.org/10.1021/jz400125r
- Dhifaoui H., Aloui W., Bouazizi A. Optical, Electrochemical and Electrical Properties of p-N, N-dimethyl-amino-benzylidene-malononitrile Thin Films // Mater. Res. Express. 2020. V. 7. № 4. 045101. https://doi.org/10.1088/2053-1591/ab7dfb
- Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulivic V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange // ACS Nano. 2014. V. 8. № 6. P. 5863–5872. https://doi.org/10.1021/nn500897c
- Sugiyama K., Ishii H., Ouchi Y., Seki K. Dependence of Indium–Tin–Oxide Work Function on Surface Cleaning Method as Studied by Ultraviolet and Х-ray Photoemission Spectroscopies // J. Appl. Phys. 2000. V. 87. № 1. P. 295–298 https://doi.org/10.1063/1.371859
- Kim S.Y., Lee J.L., Kim K.B., Tak Y.H. Effect of Ultraviolet–Ozone Treatment of Indium–Tin–Oxide on Electrical Properties of Organic Light Emitting Diodes // J. Appl. Phys. 2004. V. 95. № 5. P. 2560–2563. https://doi.org/10.1063/1.1635995
Supplementary files
