Получение и электрофизические свойства сэндвич-структур на основе “чернил” из квантовых точек PbS, покрытых тиогликолевой кислотой, для ИК-фотодетекторов

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Разработана методика получения, исследованы структурные и электрические свойства сэндвич-структур типа электрод из оксида индия-олова (ITO) – конденсат коллоидных квантовых точек (КТ) PbS–Al-электрод (ITO – КТ PbS – Al). Отличительной особенностью используемых коллоидных КТ PbS является их синтез в воде с применением короткоцепочечного лиганда – молекулы тиогликолевой кислоты (TGA). Такой подход сразу обеспечивает создание проводящей пленки КТ без трудоемкой процедуры замены лиганда. Обнаружено, что обработка КТ PbS в растворе йодидом калия приводит к формированию фрагментов конденсатов в виде упорядоченных сверхрешеток. Показано, что проводимость сэндвич-структуры ITO – КТ PbS–Al преимущественно определяется барьером Шоттки, возникающим на границе пленка КТ PbS/Al-электрод. Вольт-амперная характеристика проанализирована с использованием уравнения Шокли для идеального диода. Обнаружено, что обработка КТ PbS в растворе йодидом калия приводит к улучшению параметра идеальности диода. Сделано заключение, что сэндвич-структуры ITO–КТ PbS–Al-электрод потенциально могут быть использованы как основа для ИК-фотодетекторов на основе КТ.

About the authors

K. S. Chirkov

Voronezh State University

Universitetskaya pl., 1, Voronezh, 394006 Russia

M. S. Smirnov

Voronezh State University

Email: smirnov_m_s@mail.ru
Universitetskaya pl., 1, Voronezh, 394006 Russia

O. V. Ovchinnikov

Voronezh State University

Universitetskaya pl., 1, Voronezh, 394006 Russia

V. Y. Khokhlov

Voronezh State University

Universitetskaya pl., 1, Voronezh, 394006 Russia

A. N. Latyshev

Voronezh State University

Universitetskaya pl., 1, Voronezh, 394006 Russia

References

  1. Xu G., Zeng S., Swihart M., Yong K.-T., Prasad P. New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine // Chem. Rev. 2016. V. 116. P. 12234–12327. https://doi.org/10.1021/acs.chemrev.6b00290
  2. Zebibula A., Alifu N., Xia L., Sun C., Yu X., Xue D., Liu L., Li G., Qian J. Ultrastable and Biocompatible NIR-II Quantum Dots for Functional Bioimaging // Adv. Funct. Mater. 2018. V. 28. 1703451. https://doi.org/10.1002/adfm.201703451
  3. Yin X., Zhang C., Guo Y., Yang Y., Xing Y., Que W. PbS QD-based Photodetectors: Future-Oriented Near-Infrared Detection Technology // J. Mater. Chem. C. 2021. V. 9. P. 417–438. https://doi.org/10.1039/D0TC04612D
  4. Scanlon W.W. Recent Advances in the Optical and Electronic Properties of PbS, PbSe, PbTe and Their Alloys // J. Phys. Chem. Solids. 1959. V. 8. P. 423–428. https://doi.org/10.1016/0022-3697(59)90379-8
  5. Warner J.H., Thomsen E., Watt A.R., Heckenberg N.R., Rubinsztein-Dunlop H. Time-resolved Photoluminescence Spectroscopy of Ligand-Capped PbS Nanocrystals // Nanotechnology. 2005. V. 16. P. 175–179. https://doi.org/10.1088/0957-4484/16/2/001
  6. Torres-Gomez N., Garcia-Gutierrez D.F., Lara-Canche A.R., Triana-Cruz L., Arizpe-Zapata J.A., Garcia-Gutierrez D.I. Absorption and Emission in the Visible Range by Ultra-Small PbS Quantum Dots in the Strong Quantum Confinement Regime with S-terminated Surfaces Capped with Diphenylphosphine // J. Alloys Compd. 2021. V. 860. 158443. https://doi.org/10.1016/j.jallcom.2020.158443
  7. Kim D., Kuwabara T., Nakayama M. Photoluminescence Properties Related to Localized States in Colloidal PbS Quantum Dots // J. Lumin. 2006. V. 119–120. P. 214–218. https://doi.org/10.1016/j.jlumin.2005.12.033
  8. Gilmore R.H., Liu Y., Shcherbakov-Wu W., Dahod N.S., Lee E.M.Y., Weidman M.C., Li H., Jean J., Bulovic V., Willard A.P., Grossman J.C., Tisdale W.A. Epitaxial Dimers and Auger-Assisted Detrapping in PbS Quantum Dot Solids // Matter. 2019. V. 1. № 1. P. 250–265. https://doi.org/10.1016/j.matt.2019.05.015
  9. Nakashima S., Hoshino A., Cai J., Mukai K. Thiol-stabilized PbS Quantum Dots with Stable Luminescence in the Infrared Spectral Range // J. Cryst. Growth. 2013. V. 378. P. 542–545. https://doi.org/10.1016/j.jcrysgro.2012.11.024
  10. Loiko P.A., Rachkovskaya G.E., Zacharevich G.B., Yumashev K.V. Wavelength-tunable Absorption and Luminescence of SiO2–Al2O3–ZnO–Na2O–K2O–NaF Glasses with PbS Quantum Dots // J. Lumin. 2013. V. 143. P. 418–422. https://doi.org/10.1016/j.jlumin.2013.05.057
  11. Kolobkova E., Lipatova Z., Abdrshin A., Nikonorov N. Luminescent Properties of Fluorine Phosphate Glasses Doped with PbSe and PbS Quantum Dots // Opt. Mater. 2017. V. 65. P. 124–128. https://doi.org/10.1016/j.optmat.2016.09.033
  12. Weidman M.C., Beck M.E., Hoffman R.S., Prins F., Tisdale W.A. Monodisperse, Air-Stable PbS Nanocrystals Via Precursor Stoichiometry Control // ACS Nano. 2014. V. 8. P. 6363–6371. https://doi.org/10.1021/nn5018654
  13. Wang R., Shang Y., Kanjanaboos P., Zhou W., Ning Z., Sargent E.H. Colloidal Quantum Dot Ligand Engineering for High Performance Solar Cells // Energy Environ. Sci. 2016. V. 9. P. 1130–1143. https://doi.org/10.1039/C5EE03887A
  14. Carey G.H., Abdelhady A.L., Ning Z., Thon S.M., Bakr O.M., Sargent E.H. Colloidal Quantum Dot Solar Cells // Chem. Rev. 2015. V. 115. P. 12732–12763. https://doi.org/10.1021/acs.chemrev.5b00063
  15. Boles M.A., Ling D., Hyeon T., Talapin D.V. The Surface Science of Nanocrystals // Nat. Mater. 2016. V. 15. P. 141–153. https://doi.org/10.1038/nmat4526
  16. Alharthi S.S., Alzahrani A., Razvi M.A.N., Badawi A., Althobaiti M.G. Spectroscopic and Electrical Properties of Ag2S/PVA Nanocomposite Films for Visible-Light Optoelectronic Devices // J. Inorg. Organomet. Polym. Mater. 2020. V. 30. P. 3878–3885. https://doi.org/10.1007/s10904-020-01519-4
  17. Ruiz D., del Rosal B., Acebron M., Palencia C., Sun C., Cabanillas-Gonzalez J., Lopez-Haro M., Hungria A.B., Jaque D., Juarez B.H. Ag/Ag2S Nanocrystals for high Sensitivity Near-Infrared Luminescence Nanothermometry // Adv. Funct. Mater. 2016. V. 27. 1604629. https://doi.org/10.1002/adfm.201604629
  18. Zamiri R., Abbastabar Ahangar H., Zakaria A., Zamiri G., Shabani M., Singh B., Ferreira J.M.F. The Structural and Optical Constants of Ag2S Semiconductor Nanostructure in the Far-Infrared // Chem. Cent. J. 2015. V. 9. № 1. 28. https://doi.org/10.1186/s13065-015-0099-y
  19. Law M., Luther J.M., Song Q., Hughes B.K., Perkins C.L., Nozik A.J. Structural, Optical, and Electrical Properties of PbSe Nanocrystal Solids Treated Thermally or with Simple Amines // J. Am. Chem. Soc. 2008. V. 130 P. 5974–5985. https://doi.org/10.1021/ja800040c
  20. Pattantyus-Abraham A.G., Kramer I.J., Barkhouse A.R., Wang X., Konstantatos G., Debnath R., Levina L., Raabe I., Nazeeruddin M.K., Gratzel M. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells // ACS Nano. 2010. V. 4. P. 3374–3380. https://doi.org/10.1021/nn100335g
  21. Tang J., Kemp K.W., Hoogland S., Jeong K.S., Liu H., Levina L., Furukawa M., Wang X., Debnath R., Cha D. Colloidal-Quantum-Dot Photovoltaics Using Atomicligand Passivation // Nat. Mater. 2011. V. 10. P. 765–771. https://doi.org/10.1038/nmat3118
  22. Zhang H., Jang J., Liu W., Talapin D.V. Colloidal Nanocrystals with Inorganic Halide, Pseudohalide, and Halometallate Ligands // ACS Nano. 2014. V. 8. P. 7359–7369. https://doi.org/10.1021/nn502470v
  23. Hu L., Lei Q., Guan X., Patterson R., Yuan J., Lin C.-H., Kim J., Gang X., Younis A., Wu X., Liu X., Wan T., Chu D., Wu T., Huang S. Optimizing Surface Chemistry of PbS Colloidal Quantum Dot for Highly Efficient and Stable Solar Cells Via Chemical Binding // Adv. Sci. 2021. V. 8. 2003138. https://doi.org/10.1002/advs.202003138
  24. Parfenov P.S., Bukhryakov N.V., Onishchuk D.A., Babaev A.A., Sokolova A.V., Litvin A.P. Study of Charge Carrier Mobility in PBS Nanocrystal Layers Using Field-Effect Transistors // Semiconductors. 2022. V. 56. № 2. P. 175–181. https://doi.org/10.21883/SC.2022.02.53049.9734
  25. Lu K., Wang Y., Liu Z., Han L., Shi G., Fang H., Chen J., Ye X., Chen S., Yang F., Shulga A.G., Wu T., Gu M., Zhou S., Fan J., Loi M.A., Ma W. High-Efficiency PbS Quantum-Dot Solar Cells with Greatly Simplified Fabrication Processing Via “Solvent-Curing” // Adv. Mater. 2018. V. 30. 1707572 https://doi.org/10.1002/adma.201707572
  26. Xu J., Voznyy O., Liu M., Kirmani A.R., Walters G., Minur R., Abdelsamie M., Proppe A.H., Sarkar A., de Arquer F.P.G., Wei M., Sun B., Liu M., Ouelette O., Quintero-Bermudez R., Li J., Fan J., Quan L., Todorovic P., Tan H., Hoogland S., Kelley S.O., Stefik M., Amassian A., Sargent E.H. 2D Matrix Engineering for Homogeneous Quantum Dot Coupling in Photovoltaic Solids // Nat. Nanotech. 2018. V. 13. P. 456–462. https://doi.org/10.1038/s41565-018-0117-z
  27. Aqoma H., Jang S.-Y. Solid-State-Ligand-Exchange Free Quantum Dot Inkbased Solar Cells with an Efficiency of 10.9% // Energy Environ. Sci. 2018. V. 11. P. 1603–1609. https://doi.org/10.1039/C8EE00278A
  28. Wang Y., Liu Z., Huo N., Li F., Gu M., Ling X., Zhang Y., Lu K., Han Lu., Fang H., Shulga A.G., Xue Y., Zhou S., Yang F., Tang X., Zheng J., Loi M.A., Konstantatos G., Ma W. Room-Temperature Direct Synthesis of Semiconductive PbS Nanocrystal Inks for Optoelectronic Applications // Nat. Common. 2019. V. 10. 5136. https://doi.org/10.1038/s41467-019-13158-6
  29. Grevtseva I.G., Chirkov K.S., Ovchinnikov O.V., Smirnov M.S. Luminescence of Thioglycolic Acid-Passivated PbS Quantum Dots in the Presence of Potassium Iodide // Inorg. Mater. 2023. V. 59. № 10. P. 1045–1053. https://doi.org/10.1134/S0020168523100047
  30. Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen // Math.-phys. Klasse. 1918. V. 2. P. 98–100.
  31. Maskaeva L.N., Markov V.F., Voronin V.I., Pozdin A.V., Borisova E.S., Anokhina I.A. Structural Characteristics and Photoelectric Properties of Iodine-Doped PbS Films Produced by Chemical Deposition // Inorg. Mater. 2023. V. 59. № 4. P. 349–358. https://doi.org/10.1134/S0006297923040016
  32. Smirnov M.S., Ovchinnikov O.V. IR luminescence Mechanism in Colloidal Ag2S Quantum Dots // J. Lumin. 2020. V. 227. 117526. https://doi.org/10.1016/j.jlumin.2020.117526
  33. Grevtseva I.G., Ovchinnikov O.V., Smirnov M.S., Chirkov K.S. Trap State and Exciton Luminescence of Colloidal PbS Quantum Dots Coated with Thioglycolic Acid Molecules // Condens. Matter Interphases. 2023. V. 25. № 2. P. 182–189. https://doi.org/10.17308/kcmf.2023.25/11099
  34. Giansante C., Infante I. Surface Traps in Colloidal Quantum Dots: a Combined Experimental and Theoretical Perspective // J. Phys. Chem. Lett. 2017. V. 8. № 20. P. 5209–5215. https://doi.org/10.1021/acs.jpclett.7b02193
  35. Voznyy O., Thon S.M., Ip A.H., Sargent E.H. Dynamic trap Formation and Elimination in Colloidal Quantum Dots // J. Phys. Chem. Lett. 2013. V. 4. P. 987–992. https://doi.org/10.1021/jz400125r
  36. Dhifaoui H., Aloui W., Bouazizi A. Optical, Electrochemical and Electrical Properties of p-N, N-dimethyl-amino-benzylidene-malononitrile Thin Films // Mater. Res. Express. 2020. V. 7. № 4. 045101. https://doi.org/10.1088/2053-1591/ab7dfb
  37. Brown P.R., Kim D., Lunt R.R., Zhao N., Bawendi M.G., Grossman J.C., Bulivic V. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films Through Ligand Exchange // ACS Nano. 2014. V. 8. № 6. P. 5863–5872. https://doi.org/10.1021/nn500897c
  38. Sugiyama K., Ishii H., Ouchi Y., Seki K. Dependence of Indium–Tin–Oxide Work Function on Surface Cleaning Method as Studied by Ultraviolet and Х-ray Photoemission Spectroscopies // J. Appl. Phys. 2000. V. 87. № 1. P. 295–298 https://doi.org/10.1063/1.371859
  39. Kim S.Y., Lee J.L., Kim K.B., Tak Y.H. Effect of Ultraviolet–Ozone Treatment of Indium–Tin–Oxide on Electrical Properties of Organic Light Emitting Diodes // J. Appl. Phys. 2004. V. 95. № 5. P. 2560–2563. https://doi.org/10.1063/1.1635995

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».