[]
- Authors: Chernyavina V.V.1, Berezhnaya A.G.1, Dyshlovaya Y.A.1
-
Affiliations:
- Southern Federal University
- Issue: Vol 61, No 5–6 (2025)
- Pages: 317-324
- Section: Articles
- URL: https://journal-vniispk.ru/0002-337X/article/view/308714
- DOI: https://doi.org/10.31857/S0002337X25030077
- EDN: https://elibrary.ru/lbqpke
- ID: 308714
Cite item
Abstract
About the authors
V. V. Chernyavina
Southern Federal University
Email: vchernyavina@yandex.ru
Bolshaya Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
A. G. Berezhnaya
Southern Federal UniversityBolshaya Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
Y. A. Dyshlovaya
Southern Federal UniversityBolshaya Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
References
- Bélanger D., Brousse L., Long J.W. Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors // Electrochem. Soc. Interface. 2008. V. 17. P. 49–52. https://doi.org/10.1149/2.F07081IF
- Toupin M., Brousse T., Bélanger D. Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor // Chem. Mater. 2004. V. 16. № 16. P. 3184–3190. https://doi.org/10.1021/cm049649
- Li S.-M., Wang Y.-S., Yang S.-Y., Liu C.-H., Chang K.-H., Tien H.-W., Wen N.-T., Ma C.-C.M., Hu C.-C. Electrochemical Deposition of Nanostructured Manganese Oxide on Hierarchically Porous Graphene–Carbon Nanotube Structure for UltraHigh-Performance Electrochemical Capacitors // J. Power Sources. 2013. V. 225. P. 347–355. https://doi.org/10.1016/j.jpowsour.2012.10.037
- Brousse T., Toupin M., Dugas R., Athouël L., Crosnier O., Bélanger D. Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors // J. Electroсhem. Soc. 2006. V. 153. № 12. P. 2171–2180. https://doi.org/10.1149/1.2352197
- Devaraj S., Munichandraiah N. Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties // J. Phys. Chem. C. 2008. V. 112. P. 4406–4417. https://doi.org/10.1021/jp7108785
- Lee H.Y., Kim S., Lee H.Y. Expansion of Active Site Area and Improvement of Kinetic Reversibility in Electrochemical Pseudocapacitor Electrode // Electrochem. Solid-State Lett. 2001. V. 4. № 3. P. 19–22. https://doi.org/10.1149/1.1346536
- Luo J.-Y., Xia Y.-Y. Effect of Pore Structure on the Electrochemical Capacitive Performance of MnO2 // J. Electroсhem. Soc. 2007. V. 154. № 11. P. 987–992. https://doi.org/10.1149/1.2775167
- Tian F., Xie Y. Preparation and Capacitive Properties of Lithium Manganese Oxide Intercalation Compound // J. Nanopart. Res. 2015. V. 17. P. 481–497. https://doi.org/10.1007/s11051-015-3284-y
- Jänes A., Eskusson J., Mattisen L. et al. Electrochemical Behaviour of Hybrid Devices Based on Na2SO4 and Rb2SO4 Neutral Aqueous Electrolytes and Carbon Electrodes within Wide Cell Potential Region // J. Solid State Electrochem. 2015. V. 19. P. 769–783. https://doi.org/10.1007/s10008-014-2668-8
- Munaiah Y., Gnana B., Raj S., Prem Kumar T., Ragupathy P. Facile Synthesis of Hollow Sphere Amorphous MnO2: the Formation Mechanism, Morphology and Effect of a Bivalent Cation-Containing Electrolyte on its Supercapacitive Behavior // J. Mater. Chem. A. 2013. V. 1. № 13. P. 4300–4306. https://doi.org/10.1039/C3TA01089A
- Radhiyah A., Izwan M.I., Baiju V., Feng C.K., Jamil I., Jose R. Doubling of Electrochemical Parameters Via the Pre-Intercalation of Na+ in Layered MnO2 Nanoflakes Compared to α-MnO2 Nanorods // RSC Advances. 2015. V. 5. № 13. P. 9667–9673. https://doi.org/10.1039/C4RA15536J
- Chen C.Y., Wang S.C., Tien Y.H. et al. Hybrid Manganese Oxide Films for Supercapacitor Application Prepared by Sol–Gel Technique // Thin Solid Films. 2009. V. 518. № 5. P. 1557–1560. https://doi.org/10.1016/j.tsf.2009.09.072
- Chou S.L., Cheng F.Y., Chen J. Electrodeposition Synthesis and Electrochemical Properties of Nanostructured γ-MnO2 Films // J. Power Sources. 2006. V. 162. № 1. P. 727–734. https://doi.org/10.1016/j.jpowsour.2006.06.033
- Nam K.W., Kim K.B. Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors // J. Electroсhem. Soc. 2006. V. 153. № 1. P. 81–88. https://doi.org/10.1149/1.2131821
- Djurfors B., Broughton J.N., Brett M.J. et al. Electrochemical Oxidation of Mn/MnO Films: Formation of an Electrochemical Capacitor // Acta Mater. 2005. V. 53. № 4. P. 957–965. https://doi.org/10.1016/j.actamat.2004.10.041
- Xia H., Xiao W., Lai M.O. et al. Facile Synthesis of Novel Nanostructured MnO2 Thin Films and Their Application in Supercapacitors // Nanoscale Res. Lett. 2009. V. 4. № 9. P. 1035–1040. https://doi.org/10.1007/s11671-009-9352-4
- Xia H., Lai M.O., Lu L. Nanostructured Manganese Oxide Thin Films as Electrode Material for Supercapacitors // JOM. 2011. V. 63. № 1. P. 54–59. https://doi.org/10.1007/s11837-011-0014-5
- Rodrigues S., Munichandraiah N., Shukla A.K. A Cyclic Voltammetric Study of the Kinetics and Mechanism of Electrodeposition of Manganese Dioxide // J. Appl. Electrochem. 1998. V. 28. № 11. P. 1235–1241. https://doi.org/10.1023/A:1003472901760
- Le Gal La Salle A., Sarciaux S., Verbaere A., Piffard Y., Guyomard D. Synthesis and Characterization of γ-MnO2 Samples with Unusual Structural Parameters // J. Electrochem. Soc. 2000. V. 147. № 3. P. 945–952. https://doi.org/10.1149/1.1393296
- Devaraj S., Munichandraiah N. The Effect of Nonionic Surfactant Triton X-100 During Electrochemical Deposition of MnO2 on its Capacitance Properties // J. Electrochem. Soc. 2007. V. 154. № 10. P. 901–909. https://doi.org/10.1149/1.2759618
- Lefebvre M.C., Conway B.E. Nucleation and Morphologies in the Process of Electrocrystallization of Aluminium on Smooth Gold and Glassy-Carbon Substrates // J. Electroanal. Chem. 2000. V. 480. P. 46–58. https://doi.org/10.1016/S0022-0728(99)00444-1
- Scharifker B., Hills G. Theoretical and Experimental Studies of Multiple Nucleation // Electrochim. Acta. 1983. V. 28. P. 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
- Бойцова О.В., Шекунова Т.О., Баранчиков А.Е. Синтез нанокристаллического диоксида марганца в условиях гидротермально-микроволновой обработки // Журн. неорган. химии. 2015. Т. 60. № 5. С. 612–617. https://doi.org/10.7868/S0044457X15050025
- Julien C.M., Massot M., Poinsignon C. Lattice Vibrations of Manganese Oxides. Part 1. Periodic Structures // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004. V. 60. № 3. P. 689–700. https://doi.org/10.1016/S1386-1425(03)00279-8
- Dubal D.P., Kim W.B., Lokhande C.D. Surfactant Assisted Electrodeposition of MnO2 Thin Films: Improved Supercapacitive Properties // J. Alloys Compd. 2011. V. 509. № 41. P. 10050–10054. https://doi.org/10.1016/j.jallcom.2011.08.029
- Pang S.C., Anderson M.A., Chapman T.W. Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide // J. Electrochem. Soc. 2000. V. 147. P. 444–450. https://doi.org/10.1149/1.1393216
- Kuo S.L., Wu N.L. Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2·nH2O Supercapacitors in Aqueous Electrolytes // J. Electrochem. Soc. 2006. V. 153. P. 1317–1324. https://doi.org/10.1149/1.2197667
- Ragupathy P., Vasan H.N., Munichandraiah N. Synthesis and Characterization of Nano-MnO2 for Electrochemical Supercapacitor Studies // J. Electrochem. Soc. 2008. V. 155. P. 34–40. https://doi.org/10.1149/1.2800163
- Ghasemi S., Hosseini S.R., Boore-talari O. Sonochemical Assisted Synthesis MnO2/RGO Nanohybrid as Effective Electrode Material for Supercapacitor // Ultrason Sonochem. 2018. V. 40. P. 675–685. https://doi.org/10.1016/j.ultsonch.2017.08.013
- Chen P.-Y., Adomkevicius A., Lu Y.-T., Lin S.-C., Tu Y.-H., Hu C.-C. The Ultrahigh-Rate Performance of Alkali Ion-Pre-Intercalated Manganese Oxides in Aqueous Li2SO4, Na2SO4, K2SO4 and MgSO4 Electrolytes // J. Electrochem. Soc. 2019. V. 166. № 10. P. 1875–1883. https://doi.org/10.1149/2.0631910jes
- Augustyn V., Come J., Lowe M.A., Kim J.W., Taberna P.-L., Tolbert S.H., Abruña H.D., Simon P., Dunn B. High-Rate Electrochemical Energy Storage Through Li+ Intercalation Pseudocapacitance // Nat. Mater. 2013. V. 12. № 6. P. 518–522. https://doi.org/10.1038/nmat3601
- Keshari A.S., Dubey P. Sucrose-Assisted One Step Hydrothermal Synthesis of MnCO3/Mn3O4 Hybrid Materials for Electrochemical Energy Storage // Electrochim. Acta. 2022. V. 402. 139486. https://doi.org/10.1016/j.electacta.2021.139486
Supplementary files
