Синтез и фотокаталитические свойства диоксида титана, модифицированного ванадием
- Authors: Belikov M.L.1, Safaryan S.A.1
-
Affiliations:
- Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after I.V. Tananaev – a branch of the Federal Research Center 'Kola Science Center' of the Russian Academy of Sciences
- Issue: Vol 61, No 7–8 (2025)
- Pages: 411-423
- Section: Articles
- URL: https://journal-vniispk.ru/0002-337X/article/view/319026
- DOI: https://doi.org/10.7868/S3034558825040043
- ID: 319026
Cite item
Abstract
Keywords
About the authors
M. L. Belikov
Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after I.V. Tananaev – a branch of the Federal Research Center 'Kola Science Center' of the Russian Academy of Sciences
Email: masim-bek@mail.ru
Akademgorodok, 26a, Apatity, Murmansk Region, 184209 Russia
S. A. Safaryan
Institute of Chemistry and Technology of Rare Elements and Mineral Raw Materials named after I.V. Tananaev – a branch of the Federal Research Center 'Kola Science Center' of the Russian Academy of SciencesAkademgorodok, 26a, Apatity, Murmansk Region, 184209 Russia
References
- Fujishima A., Honda K. Electrochemical Evidence for the Mechanism of the Primary Stage of Photosynthesis // Bull. Chem. Soc. Jpn. 1971. V. 44. № 4. P. 1148–1150. 10.1246/bcsj.44.1148' target='_blank'>https://doi: 10.1246/bcsj.44.1148
- Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode // Nature. 1972. V. 238. № 5358. P. 37–38. https://doi.org/10.1038/238037a0
- Renz C. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsauren // Helv. Chim. Acta. 1921. V. 4. P. 961–968. https://doi.org/10.1002/hlca.192100401101
- Keidel E. The Fading of Aniline Dyes in the Presence of Titanium White // Farben-Ztg. 1929. V. 34. P. 1242–1243.
- Dong H., Zeng G., Tang L., Fan C., Zhang C., He X. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures // Water. Res. 2015. V. 79. P. 128–146. https://doi.org/10.1016/j.watres.2015.04.038
- Jiang L., Wang Y., Feng C. Application of Photocatalytic Technology in Environmental Safety // Procedia Eng. 2012. V. 45. P. 993–997. https://doi.org/10.1016/j.proeng.2012.08.271
- Tasbihi M., Călin I., Šuligoj A., Fanetti M., Lavrenčič Štangar U. Photocatalytic Degradation of Gaseous Toluene by Using TiO2 Nanoparticles Immobilized on Fiberglass Cloth // J. Photochem. Photobiol., A. 2017. V. 336. P. 89–97. https://doi.org/10.1016/j.jphotochem.2016.12.025
- Bhattacharyya A., Kawi S., Ray M.B. Photocatalytic Degradation of Orange II by TiO2 Catalysts Supported on Adsorbents // Catal. Today. 2004. V. 98. № 3. P. 431–439. https://doi.org/10.1016/j.cattod.2004.08.010
- Jacoby W.A., Maness P.C., Wolfrum E.J., Blake D.M., Fennell J.A. Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air // Environ. Sci. Technol. 1998. V. 32. № 17. P. 2650–2653. https://doi.org/10.1021/es980036f
- Caballero L., Whitehead K.A., Allen N.S., Verran J. Inactivation of Escherichia coli on Immobilized TiO2 Using Fluorescent Light // J. Photochem. Photobiol. A. 2009. V. 202. № 2. P. 92–98. https://doi.org/10.1016/j.jphotochem.2008.11.005
- Liu H.-L., Yang T.C.-K. Photocatalytic Inactivation of Escherichia coli and Lactobacillus Helveticus by ZnO and TiO2 Activated with Ultraviolet Light // Process Biochem. 2003. V. 39. № 4. P. 475–481. https://doi.org/10.1016/S0032-9592(03)00084-0
- Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic Degradation for Environmental Applications – a Review // J. Chem. Technol. Biotechnol. 2002. V. 77. № 1. P. 102–116. https://doi.org/10.1002/jctb.532
- Jimmy C.Y.U., Wingkei H.O., Jiaguo Y.U., Hoyin Y.I.P., Po Keung Wong, Jincai Zhao. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania // Environ. Sci. Technol. 2005. V. 39. № 4. P. 1175–1179. https://doi.org/10.1021/es035374h
- Wang W., Huang G., Jimmy C. Yu., Wong P.K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms // J. Environ. Sci. 2015. V. 34. P. 232–247. https://doi.org/10.1016/j.jes.2015.05.003
- Karvinen S.M. The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide // Ind. Eng. Chem. Res. 2003. V. 42. № 5. P. 1035–1043. https://doi.org/10.1021/ie020358z
- Szczepanik B. Photocatalytic Degradation of Organic Contaminants Over Clay-TiO2 Nanocomposites: a Review // Appl. Clay Sci. 2017. V. 141. P. 227–239. https://doi.org/10.1016/j.clay.2017.02.029
- Hayat K., Dimitrios B. Synthesis, Physicochemical Properties and Visible Light Photocatalytic Studies of Molybdenum, Iron and Vanadium Doped Titanium Dioxide // React. Kinet., Mech. Catal. 2014. V. 111. № 1. P. 393–414. https://doi.org/10.1007/s11144-013-0637-3
- Nowotny M.K., Sheppard L.R., Bak T., Nowotny J. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts // J. Phys. Chem. C. 2008. V. 112. P. 5275–5300. https://doi.org/10.1021/jp077275m
- Teh C.M., Mohamed A.R. Roles of Titanium Dioxide and Ion-Doped Titanium Dioxide on Photocatalytic Degradation of Organic Pollutants (Phenolic Compounds and Dyes) in Aqueous Solutions: a Review // J. Alloys Compd. 2011. V. 509. P. 1648–1660. https://doi.org/10.1016/j.jallcom.2010.10.181
- Yalcin Y., Kilic M., Cina Z. Fe+3-doped TiO2: a Combined Experimental and Computational Approach to the Evaluation of Visible Light Activity // Appl. Catal. B: Env. 2010. V. 99. P. 469–477. https://doi.org/10.1016/j.apcatb.2010.05.013
- Carp O., Huisman C.L., Reller A. Photoinduced Reactivity of Titanium Dioxide // Prog. Solid State Chem. 2004. V. 32. P. 33–177. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
- Bally A.R., Korobeinikova E.N., Schmid P.E., Lévy F., Bussy F. Structural and Electrical Properties of Fe-Doped TiO2 Thin Films // J. Phys. D: Appl. Phys. 1998. V. 31. P. 1149–1154. https://doi.org/10.1088/0022-3727/31/10/004
- Furubayashi Y., Hitosugi T., Yamamoto Y., Inaba K., Kinoda G., Hirose Y., Shimada T., Hasegawa T. A Transparent Metal: Nb-Oped Anatase TiO2 // Appl. Phys. Lett. 2005. V. 86. № 25. P. 252101–252101–3. https://doi.org/10.1063/1.1949728
- Fan C., Xue P., Sun Y. Preparation of Nano-TiO2 Doped with Cerium and its Photocatalytic Activity // J. Rare Earths. 2006. V. 24. P. 309–313. https://doi.org/10.1016/S1002-0721(06)60115-4
- El-Bahy Z.M., Ismail A.A., Mohamed R.M. Enhancement of Titania by Doping Rare Earth for Photodegradation of Organic Dye (Direct Blue) // J. Hazar. Mater. 2009. V. 166. P. 138–143. https://doi.org/10.1016/j.jhazmat.2008.11.022
- Stengl V., Bakardjieva S., Murafa N. Preparation and Photocatalytic Activity of Rare Earth Doped TiO2 Nanoparticles // Mater. Chem. Phys. 2009. V. 114. P. 217–226. https://doi.org/10.1016/j.matchemphys.2008.09.025
- Shi J.W., Zheng J.T., Wu P. Preparation, Characterization and Photocatalytic Activities of Holmium-Doped Titanium Dioxide Nanoparticles // J. Hazar. Mater. 2009. V. 161. P. 416–422. https://doi.org/10.1016/j.jhazmat.2008.03.114
- Куренкова А.Ю., Козлова Е.А., Каичев В.В. Влияние реакционных условий на скорость получения водорода в водных растворах глицерина на фотокатализаторах Pt/TiO2 // Кинетика и катализ. 2020. Т. 61. № 6. С. 812–817. https://doi.org/10.31857/S0453881120060052
- Lakhera S.K., Neppolian B. Role of Molecular Oxygen on the Synthesis of Ni(OH)2/TiO2 Photocatalysts and its Effect on Solar Hydrogen Production Activity // Int. J. Hydrogen Energy. 2020. V. 45. № 13. P. 7627–7640. https://doi.org/10.1016/j.ijhydene.2019.10.142
- Марковская Д.В., Люлюкин М.Н., Журенок А.В., Козлова Е.А. Новые композитные фотокатализаторы на основе твердых растворов сульфидов кадмия и цинка, диоксида титана и платины для фотокаталитического восстановления углекислого газа парами воды под воздействием видимого света // Кинетика и катализ. 2021. Т. 62. № 4. С. 437–445. https://doi.org/10.31857/S0453881121040109
- Belikov M.L., Sedneva T.A., Lokshin E.P. Adsorptive and Photocatalytic Properties of Tungsten-Modified Titanium Dioxide // Inorg. Mater. 2021. V. 57. № 2. P. 146–153. https://doi.org/10.1134/S0020168521020023
- Беликов М.Л., Сафарян С.А. Адсорбционные и фотокаталитические свойства диоксида титана, модифицированного молибденом // Неорган. материалы. 2022. Т. 58. № 7. С. 742–749. https://doi.org/10.31857/S0002337X2207003X
- Беликов М.Л., Сафарян С.А., Корнейкова П.А. Синтез оксидных композитов титана и марганца, исследование их физико-химических и фотокаталитических свойств // Неорган. материалы. 2023. Т. 59. № 2. С. 150–161. https://doi.org/10.3185ан7/S0002337X23020021
- Ильинский А.В., Шадрин Е.Б. Фазовый переход окислов ряда Магнели: VO, V2O3, VO2, V2O5 // Физика твердого тела. 2023. Т. 65. № 12. С. 2068–2070. https://doi.org/10.61011/FTT.2023.12.56724.4937k
- Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. Почти полная система средних ионных кристаллографических радиусов и ее использование для определения потенциалов ионизации // Вестник Московского университета. Серия 2. Химия. 2008. Т. 49. № 6. С. 363–384.
- Kinyua E.M., Nyakairu G.W.A., Tebandeke E., Odume O.N. Visible Light Photocatalytic Degradation of HDPE Microplastics Using Vanadium-Doped Titania // Сentral Аsian J. Water Res. (CAJWR). 2024. V. 10. № 1. P. 126–141 https://doi.org/10.29258/CAJWR/2024-R1.v10-1/ 126-141.eng
- Jaiswal R., Patelb N., Kothari D.C., Miotello A. Improved Visible Light Photocatalytic Activity of TiO2 Co-Doped with Vanadium and Nitrogen // Appl. Catal., B: Environ. 2012. V. 126. P. 47–54. http://doi.org/10.1016/j.apcatb.2012.06.030
- Lin W.-C., Lin Y.-J. Effect of Vanadium(IV)-Doping on the Visible Light-Induced Catalytic Activity of Titanium Dioxide Catalysts for Methylene Blue Degradation // Environ. Eng. Sci. 2012. V. 29. № 6. P. 447–452. http://doi.org/10.1089/ees.2010.0350
- Liu H., Wu Y., Zhang J. A New Approach Toward Carbon-Modified Vanadium-Doped Titanium Dioxide Photocatalysts // ACS Appl. Mater. Interfaces. 2011. V. 3. № 5. P. 1757–1764. http://dx.doi.org/10.1021/am200248q
- Baozhu T., Chunzhong L., Feng G., Haibo J., Yanjie H., Jinlong Z. Flame Sprayed V-Doped TiO2 Nanoparticles with Enhanced Photocatalytic Activity under Visible Light Irradiation // Chem. Eng. J. 2009. V. 151. № 1–3. Р. 220–227. http://doi.org/10.1016/j.cej.2009.02.030
- Anpo M., Dohshi S., Kitano M., Hu Y., Takeuchi M., Matsuoke M. The Preparation and Characterization of Highly Efficient Titanium Oxide-Based Photofunctional Material // Annu. Rev. Mater. Res. 2005. V. 35. P. 1–27. https://doi.org/10.1146/annurev.matsci.35.100303. 121340
- Klose S., Raftery D. Visible Light Driven V-Doped TiO2 Photocatalyst and its Photooxidation of Ethanol // J. Phys. Chem. B. 2001. V. 105. № 14. P. 2815–2819. http://doi.org/10.1021/jp004295e
- Martin S.T., Morrison C.L., Hoffmann M.R. Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles // J. Phys. Chem. 1994. V. 98. № 51. P. 13695–13704. http://doi.org/10.1021/j100102a041
- Gu D.E., Yang B.C., Hu Y.D. V and N Co-doped Nanocrystal Anatase TiO2 Photocatalysts with Enhanced Photocatalytic Activity under Visible Light Irradiation // Catal. Commun. 2008. V. 9. № 6. P. 1472–1476. http://doi.org/10.1016/j.catcom.2007.12.014
- Yamashita H., Harada M., Misaka J., Takeuchi M., Neppolian B., Anpo M. Photocatalytic Degradation of Organic Compounds Diluted in Water Using Visible Light-Responsive Metal Ion-Implanted TiO2 Catalysts: Fe Ion-Implanted TiO2 // Catal. Today. 2003. V. 84. № 3–4. P. 191–196. https://doi.org/10.1016/S0920-5861(03)00273-6
- Zhu J., Chen F., Zhang J., Chen H., Anpo M. Fe3+-TiO2 Photocatalysts Prepared by Combining Sol–Gel Method with Hydrothermal Treatment and Their Ccharacterization // J. Photochem. Photobiol. A. 2006. V. 180. № 1. P. 196–204. http://doi.org/10.1016/j.jphotochem.2005.10.017
- Горощенко Я.Г. Химия титана. Киев: Наукова думка, 1970. 415 с.
- Локшин Э.П., Седнева Т.А., Тихомирова И.А. Получение титаносодержащих сернокислых растворов // ЖПХ. 2004. Т. 77. № 7. С. 1057–1065.
- Седнева Т.А., Локшин Э.П., Беликов М.Л., Калинников В.Т. Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана: Патент 2435733 России, МПК С01G23/053, В82В1/00, В01J21/06 (2006.01). / Заявл. 20.07.10. Опубл. 10.12.2011. Бюл. 34.
- Седнева Т.А., Локшин Э.П., Беликов М.Л., Калинников В.Т. Фотокаталитическая активность модифицированного вольфрамом диоксида титана // Доклады академии наук. 2012. Т. 443. № 2. С. 195–197.
- Седнева Т.А., Локшин Э.П., Беликов М.Л. Адсорбция ферроина фотокаталитическими материалами на основе TiO2 // Неорган. материалы. 2012. Т. 48. № 5. С. 562–569.
- Беликов М.Л., Седнева Т.А., Локшин Э.П. Синтез, свойства и фотокаталитическая активность в видимом свете нестехиометрических композитов на основе диоксида титана // Неорган. материалы. 2020. Т. 56. № 6. С. 762–773. https://doi.org/10.31857/S0002337X20060020
- Грег С., Синг К. Адсорбция. Удельная поверхность. Пористость. М.: Мир, 1984. 310 c.
- Matthews R.W., McEvoy S.R. Destruction of Phenol in Water with Sun, Sand, and Photocatalysis // Solar Energy. 1992. V. 49. № 6. P. 507–513. https://doi.org/10.1016/0038-092X(92)90159-8
- Reddy M.V., Sharma N., Adams S., Rao R.P., Peterson V.K., Chowdari B.V.R. Evaluation of Undoped and M-Doped TiO2, where M = Sn, Fe, Ni/Nb, Zr, V, and Mn, for Lithium-Ion Battery Applications Prepared by the Molten-Salt Method // RSC Adv. 2015. V. 5. № 37. P. 29535–29544. https://doi.org/10.1039/C5RA00206K
- Vernon L.W., Milligan W.O. The Crystal Structure of Rutile-Like Heavy Metal Orthovandanates // Tex. J. Sci. 1951.V. 1. P. 82–85.
- Beguemsi T., Garnier P., Weigel D. Evolution des Tenseurs de Dilatation Thermique en Fonction de la Température. III. Etude Expérimentale des Oxydes PbO1.57, PbWO4, V2O5 et V2O3 et Analyse des Résultats // J. Solid State Chem. 1978. V. 25. № 4. P. 315–324. https://doi.org/10.1016/0022-4596(78)90117-2
- Казенас К.Е., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
- Zhou W., Liu Q., Zhu Z., Zhang J. Preparation and Properties of Vanadium-Doped TiO2 Photocatalysts // J. Phys. D Appl. Phys. 2010. V. 43. P. 035301. https://doi.org/10.1088/0022-3727/43/3/035301
- Ichimura Sh., Ebisu H., Nonami T., Kato K. Photocatalytic Activity of Titanium Dioxide Coated with Apatite // Jpn. J. Appl. Phys. Pt. 1. 2005. V. 44. № 7. P. 5164–5170. https://doi.org/10.1143/JJAP.44.5164
- Yang S.-Y., Chen Y.-Y., Zheng J.-G., Cui Y.-J. Enhanced Photocatalytic Activity of TiO2 by Surface Fluorination in Degradation of Organic Cationic Compound // J. Environ. Sci. 2007. V. 19. № 1. P. 86–89. https://doi.org/10.1016/S1001-0742(07)60014-X
- Khalyavka T.A., Kapinus E.I., Viktorova T.I., Tsyba N.N. Adsorption and Photocatalytic Properties of Nanodimensional Titanium-Zinc Oxide Composites // Theor. and Exper. Chem. 2009. V. 45. № 4. P. 234–238. https://doi.org/10.1007/s11237-009-9087-4
- Sabnis R.W., Ross E., Köthe J., Naumann R. et al. Indicator Reagents // Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2009. V. 19. P. 9–53. https://doi.org/10.1002/14356007.a14_127
- Наянова Е.В., Елипашева Е.В., Сергеев Г.М., Сергеева В.П. Редокс-свойства метиленового голубого как перспективного фотометрического реагента для определения галогенных окислителей // Аналитика и контроль. 2015. Т. 19. № 2. С. 154–160. https://doi.org/10.15826/analitika.2015.19.2.005
- Вакулин И.В., Бугаец Д.В., Зильберг Р.А. Анализ точности расчета Rеd/Оx потенциалов замещенных фенолов, хинонов, и анилинов полуэмпирическими методами АМ1, RM1 и РM7 // Бутлеровские сообщения. 2017. Т. 52. № 11. С. 53–59.
- Yang X., Cao C., Hohn K., Erickson L., Maghirang R., Hamal D., Klabunde K. Highly Visible-Light Active C-and V-Doped TiO2 for Degradation of Acetaldehyde // J. Catal. 2007. V. 252. № 2. Р. 296–302. http://doi.org/10.1016/j.jcat.2007.09.014
- Klosek, S., Raftery, D. Visible Light Driven V-Doped TiO2 Photocatalyst and its Photooxidation of Ethanol // J. Phys. Chem. B. 2001. V. 105. № 14. P. 2815–2819. http://doi.org/10.1021/jp004295e
Supplementary files
