Емкостные свойства пленок гидроксида никеля как электродов для электрохимических конденсаторов на водном электролите

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Структурные характеристики и элементный состав пленок гидроксида никеля, полученных электроосаждением из растворов 0.05М NiSO4 и 0.05М NiSO4 + 0.025М Li2SO4, изучены методами ИК-спектроскопии и просвечивающей электронной микроскопии. Методами циклической вольтамперометрии, гальваностатического заряда–разряда и импедансной спектроскопии определены электрохимические характеристики электродов в 1М водном растворе NaOH. Установлено, что удельная емкость наночастиц Ni(OH)2 зависит от состава электролита, используемого при электроосаждении. Показано, что осажденный из раствора сульфатов никеля и лития электрод обеспечивает максимальную удельную энергию 46.5 Вт ч/кг при плотности мощности 110 Вт/кг. Удельная энергия данного материала остается достаточно высокой 31.5 Вт ч/кг при мощности 2141 Вт/кг, а наибольшая емкость 3818 Ф/г получена при скорости развертки потенциала 5 мВ/с.

About the authors

Y. A. Dyshlovaya

Southern Federal University

Email: poyminova@sfedu.ru
B. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia

V. V. Chernjavina

Southern Federal University

B. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia

A. G. Berezhnaya

Southern Federal University

B. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia

References

  1. Jiang W., Zhai S., Wei L., Yuan Y., Yu D., Wang L., Wei J., Chen Y. Nickel Hydroxide–Carbon Nanotube Nanocomposites as Supercapacitor Electrodes: Crystallinity Dependent Performances // Nanotechnology. 2015. V. 26. № 31. P. 314003. https://doi.org/10.1088/0957-4484/26/31/314003v
  2. Yin J., Zhou G., Gao X., Chen J., Zhang L., Xu J., Zhao P., Gao F. α- and β-Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors // J. Nanomater. 2019. V. 9. P. 1686. https://doi.org/10.3390/nano9121686
  3. Rao Y., Wang Y., Ning H., Li P., Wu M. Hydrotalcite-Like Ni(OH)2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting // A.C.S. Appl. Mater. Interfaces. 2016. V. 8. № 49. P. 33601–33607. https://doi.org/10.1021/acsami.6b11023
  4. Yan J. Fan Z., Sun W., Ning G., Wei T., Zhang Q., Zhang R., Zhi L. and Wei F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density // Adv. Funct. Mater. 2012. V. 22. P. 2632–2641. https://doi.org/10.1002/adfm.201102839
  5. Chen H., Hu L., Chen M., Yan Y., Wu L. Nickel–Cobalt Layered Double Hydroxide Nanosheets for High-Performance Supercapacitor Electrode Materials // Adv. Funct. Mater. 2014. V. 24. № 7. P. 934–942. https://doi.org/10.1002/adfm.201301747
  6. Lang J.W., Kong L.B., Liu M., Luo Y.C., Kang L. Asymmetric Supercapacitors Based on Stabilized α-Ni(OH)2 and Activated Carbon // J. Solid State Electrochem. 2010. V. 14. P. 1533–1539. https://doi.org/10.1007/s10008-009-0984-1
  7. Hariprakash B.A., Martha S.K., Hegde M.S., Shukla K. A Sealed, Starved-Electrolyte Nickel–Iron Battery // J. Appl. Electrochem. 2005. V. 35. P. 27–32. https://doi.org/10.1007/s10800-004-2052-y
  8. Hujdic J.E., Sargisian A.P., Shao J., Ye T., Menke E.J. High-Density Gold Nanowire Arrays by Lithographically Patterned Nanowire Electrodeposition // Nanoscale. 2011. V. 3. P. 2697–2699. https://doi.org/10.1039/C1NR10043B
  9. Dalgleish S., Yoshikawa H., Matsushita M.M., Awaga K., Robertson N. Electrodeposition as a Superior Route to a Thin Film Molecular Semiconductor // Chem. Sci. 2011. V. 2. P. 316–320. https://doi.org/10.1039/C0SC00446D
  10. Aghazadeh M., Hosseinifard M., Sabour B., Dalvand S. Pulse Electrochemical Dynthesis of Capsule-Like Nanostructures of Co3O4 and Investigation of Their Capacitive Performance // Appl. Surf. Sci. 2013. V. 287. P. 187–194. https://doi.org/10.1016/j.apsusc.2013.09.114
  11. Streinz C.C., Hartman A.P., Motupally S., Weidner J.W. The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films // J. Electrochem. Soc. 1995. V. 142. № 4. P. 1084–1089. https://doi.org/10.1149/1.2044134
  12. Devaraj S., Munichandraiah N. The Effect of Nonionic Surfactant Triton X-100 During Electrochemical Deposition of MnO2 on its Capacitance Properties // J. Electrochem. Soc. 2007. V. 154. № 10. P. A901–A909. https://doi.org/10.1149/1.2759618
  13. Scharifker B., Hills G. Theoretical and Experimental Studies of Multiple Nucleation // Electrochim. Acta. 1983. V. 28. № 7. P. 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
  14. Jiangshan Z., Suqi H., Liang S., Zongshan Z. Gas-Liquid Diffusion Synthesis of Different Ni(OH)2 Nanostructures for Their Supercapacitive Performance // Chem. Phys. 2019. V. 525. Р. 110395. https://doi.org/10.1016/j.chemphys.2019.110395
  15. Ni X., Zhao Q., Li B., Cheng J., Zheng H. Interconnected b-Ni(OH)2 Sheets and Their Morphology-Retained Transformation into Mesostructured Ni // Solid State Commun. 2006. V. 137. № 11. P. 585–588. https://doi.org/10.1016/j.ssc.2006.01.033
  16. Mao Y., Zhou1 B., Peng S. Simple Eposition of Mixed α, β-Nickel Hydroxide Thin Film onto Nickel Foam as High-Performance Supercapacitor Electrode Material // J. Mater. Sci. – Mater. Electron. 2020. V. 31. P. 9457–9467. https://doi.org/10.1007/s10854-020-03485-6
  17. Aghazadeh M., Golikand A.N., Ghaemi M. Synthesis, Characterization, and Electrochemical Properties of Ultrafine b-Ni(OH)2 Nanoparticles // Int. J. Hydrogen Energy. 2011. V. 36. P. 8674–8679. https://doi.org/10.1016/j.ijhydene.2011.03.144
  18. Zou C., Li Z., Wang C., Hong J., Chen J., Zhong S. Facile Electrodeposition Route for the Fabrication of Ni/Ni(OH)2 Nanocomposite Films with Different Supporting Electrolytes and Their Electrochemical Properties // J. Chem. Phys. Lett. 2022. V. 793. Р. 139471. https://doi.org/10.1016/j.cplett.2022.139471
  19. Deabate S., Fourgeot F., Henn F. X-ray Diffraction and Micro-Raman Spectroscopy Analysis of New Nickel Hydroxide Obtained by Electrodialysis // J. Power Sources. 2000. V. 87. № 1–2. P. 125–136. https://doi.org/10.1016/S0378-7753(99)00437-1
  20. Cao L., Kong L.B., Liang Y.Y., Li H.L. Preparation of Novel Nano-Composite Ni(OH)2/USY Material and Its Application for Electrochemical Capacitance Storage // Chem. Commun. 2004. V. 9. P. 1646–1647. https://doi.org/10.1039/B401922A
  21. Ida S., Shiga D., Koinuma M., Matsumoto Y. Synthesis of Hexagonal Nickel Hydroxide Nanosheets by Exfoliation of Layered Nickel Hydroxide Intercalated with Dodecyl Sulfate Ions // J. Am. Chem. Soc. 2008. V. 130. № 43. P. 14038–14039. https://doi.org/10.1021/ja804397n
  22. Liu B., Yuan H.T., Zhou Z.X., Song D.Y. Cyclic Voltammetric Studies of Stabilized α-Nickel Hydroxide Electrode // J. Power Sources. 1999. V. 79. № 2. P. 277–280. https://doi.org/10.1016/S0378-7753(99)00053-1
  23. Luo F.C., Chen Q.Y., Yin Z.L. Electrochemical Performance of Multiphase Nickel Hydroxide // Trans. Nonferrous Met. Soc. China. 2007. V. 17. № 3. P. 654–658. https://doi.org/10.1016/S1003-6326(07)60151-4
  24. Kiani M.A., Mousavi M.F., Ghasemi S. Size Effect Investigation on Battery Performance: Comparison between Micro- and Nano-Particles of β-Ni(OH)2 as Nickel Battery Cathode Material // J. Power Sources. 2010. V. 195. № 17. P. 5794–5800. https://doi.org/10.1016/j.jpowsour.2010.03.080
  25. Li W.Y., Zhang S.Y., Chen J. Synthesis, Characterization, and Electrochemical Application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 Tubes // J. Phys. Chem. B. 2005. V. 109. № 29. P. 14025–14032. https://doi.org/10.1021/jp051948o
  26. Elumalai P., Vasan H.N., Munichandraiah N. Electrochemical Studies of Cobalt Hydroxide – an Additive for Nickel Electrodes // J. Power Sources. 2001. V. 93. № 1–2. P. 201–208. https://doi.org/10.1016/S0378-7753(00)00572-3
  27. Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. Electrochemical Preparation of α-Ni(OH)2 Ultrafine Nanoparticles for High-Performance Supercapacitors // J. Solid State Electrochem. 2014. V. 18. № 6. P. 1569–1584. https://doi.org/10.1007/s10008-014-2381-7
  28. Wei H., Lv Y.Y., Han L., Tu B., Zhao D.Y. Facile Synthesis of Transparent Mesostructured Composites and Corresponding Crack-Free Mesoporous Carbon/Silica Monoliths // Chem. Mater. 2011. V. 23. № 9. P. 2353–2360. https://doi.org/10.1021/cm2000182
  29. Han T.A., Tu J.P., Wu J.B., Li Y., Yuan Y.F. Electrochemical Properties of Biphase Ni(OH)2 Electrodes for Secondary Rechargeable Ni/MH Batteries // J. Electrochem. Soc. 2006. V. 153. № 4. Р. 738. https://doi.org/10.1149/1.2171829

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».