Емкостные свойства пленок гидроксида никеля как электродов для электрохимических конденсаторов на водном электролите
- Authors: Dyshlovaya Y.A.1, Chernjavina V.V.1, Berezhnaya A.G.1
-
Affiliations:
- Southern Federal University
- Issue: Vol 61, No 7–8 (2025)
- Pages: 446-455
- Section: Articles
- URL: https://journal-vniispk.ru/0002-337X/article/view/319030
- DOI: https://doi.org/10.7868/S3034558825040081
- ID: 319030
Cite item
Abstract
About the authors
Y. A. Dyshlovaya
Southern Federal University
Email: poyminova@sfedu.ru
B. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
V. V. Chernjavina
Southern Federal UniversityB. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
A. G. Berezhnaya
Southern Federal UniversityB. Sadovaya St., 105/42, Rostov-on-Don, 344006 Russia
References
- Jiang W., Zhai S., Wei L., Yuan Y., Yu D., Wang L., Wei J., Chen Y. Nickel Hydroxide–Carbon Nanotube Nanocomposites as Supercapacitor Electrodes: Crystallinity Dependent Performances // Nanotechnology. 2015. V. 26. № 31. P. 314003. https://doi.org/10.1088/0957-4484/26/31/314003v
- Yin J., Zhou G., Gao X., Chen J., Zhang L., Xu J., Zhao P., Gao F. α- and β-Phase Ni-Mg Hydroxide for High Performance Hybrid Supercapacitors // J. Nanomater. 2019. V. 9. P. 1686. https://doi.org/10.3390/nano9121686
- Rao Y., Wang Y., Ning H., Li P., Wu M. Hydrotalcite-Like Ni(OH)2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting // A.C.S. Appl. Mater. Interfaces. 2016. V. 8. № 49. P. 33601–33607. https://doi.org/10.1021/acsami.6b11023
- Yan J. Fan Z., Sun W., Ning G., Wei T., Zhang Q., Zhang R., Zhi L. and Wei F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density // Adv. Funct. Mater. 2012. V. 22. P. 2632–2641. https://doi.org/10.1002/adfm.201102839
- Chen H., Hu L., Chen M., Yan Y., Wu L. Nickel–Cobalt Layered Double Hydroxide Nanosheets for High-Performance Supercapacitor Electrode Materials // Adv. Funct. Mater. 2014. V. 24. № 7. P. 934–942. https://doi.org/10.1002/adfm.201301747
- Lang J.W., Kong L.B., Liu M., Luo Y.C., Kang L. Asymmetric Supercapacitors Based on Stabilized α-Ni(OH)2 and Activated Carbon // J. Solid State Electrochem. 2010. V. 14. P. 1533–1539. https://doi.org/10.1007/s10008-009-0984-1
- Hariprakash B.A., Martha S.K., Hegde M.S., Shukla K. A Sealed, Starved-Electrolyte Nickel–Iron Battery // J. Appl. Electrochem. 2005. V. 35. P. 27–32. https://doi.org/10.1007/s10800-004-2052-y
- Hujdic J.E., Sargisian A.P., Shao J., Ye T., Menke E.J. High-Density Gold Nanowire Arrays by Lithographically Patterned Nanowire Electrodeposition // Nanoscale. 2011. V. 3. P. 2697–2699. https://doi.org/10.1039/C1NR10043B
- Dalgleish S., Yoshikawa H., Matsushita M.M., Awaga K., Robertson N. Electrodeposition as a Superior Route to a Thin Film Molecular Semiconductor // Chem. Sci. 2011. V. 2. P. 316–320. https://doi.org/10.1039/C0SC00446D
- Aghazadeh M., Hosseinifard M., Sabour B., Dalvand S. Pulse Electrochemical Dynthesis of Capsule-Like Nanostructures of Co3O4 and Investigation of Their Capacitive Performance // Appl. Surf. Sci. 2013. V. 287. P. 187–194. https://doi.org/10.1016/j.apsusc.2013.09.114
- Streinz C.C., Hartman A.P., Motupally S., Weidner J.W. The Effect of Current and Nickel Nitrate Concentration on the Deposition of Nickel Hydroxide Films // J. Electrochem. Soc. 1995. V. 142. № 4. P. 1084–1089. https://doi.org/10.1149/1.2044134
- Devaraj S., Munichandraiah N. The Effect of Nonionic Surfactant Triton X-100 During Electrochemical Deposition of MnO2 on its Capacitance Properties // J. Electrochem. Soc. 2007. V. 154. № 10. P. A901–A909. https://doi.org/10.1149/1.2759618
- Scharifker B., Hills G. Theoretical and Experimental Studies of Multiple Nucleation // Electrochim. Acta. 1983. V. 28. № 7. P. 879–889. https://doi.org/10.1016/0013-4686(83)85163-9
- Jiangshan Z., Suqi H., Liang S., Zongshan Z. Gas-Liquid Diffusion Synthesis of Different Ni(OH)2 Nanostructures for Their Supercapacitive Performance // Chem. Phys. 2019. V. 525. Р. 110395. https://doi.org/10.1016/j.chemphys.2019.110395
- Ni X., Zhao Q., Li B., Cheng J., Zheng H. Interconnected b-Ni(OH)2 Sheets and Their Morphology-Retained Transformation into Mesostructured Ni // Solid State Commun. 2006. V. 137. № 11. P. 585–588. https://doi.org/10.1016/j.ssc.2006.01.033
- Mao Y., Zhou1 B., Peng S. Simple Eposition of Mixed α, β-Nickel Hydroxide Thin Film onto Nickel Foam as High-Performance Supercapacitor Electrode Material // J. Mater. Sci. – Mater. Electron. 2020. V. 31. P. 9457–9467. https://doi.org/10.1007/s10854-020-03485-6
- Aghazadeh M., Golikand A.N., Ghaemi M. Synthesis, Characterization, and Electrochemical Properties of Ultrafine b-Ni(OH)2 Nanoparticles // Int. J. Hydrogen Energy. 2011. V. 36. P. 8674–8679. https://doi.org/10.1016/j.ijhydene.2011.03.144
- Zou C., Li Z., Wang C., Hong J., Chen J., Zhong S. Facile Electrodeposition Route for the Fabrication of Ni/Ni(OH)2 Nanocomposite Films with Different Supporting Electrolytes and Their Electrochemical Properties // J. Chem. Phys. Lett. 2022. V. 793. Р. 139471. https://doi.org/10.1016/j.cplett.2022.139471
- Deabate S., Fourgeot F., Henn F. X-ray Diffraction and Micro-Raman Spectroscopy Analysis of New Nickel Hydroxide Obtained by Electrodialysis // J. Power Sources. 2000. V. 87. № 1–2. P. 125–136. https://doi.org/10.1016/S0378-7753(99)00437-1
- Cao L., Kong L.B., Liang Y.Y., Li H.L. Preparation of Novel Nano-Composite Ni(OH)2/USY Material and Its Application for Electrochemical Capacitance Storage // Chem. Commun. 2004. V. 9. P. 1646–1647. https://doi.org/10.1039/B401922A
- Ida S., Shiga D., Koinuma M., Matsumoto Y. Synthesis of Hexagonal Nickel Hydroxide Nanosheets by Exfoliation of Layered Nickel Hydroxide Intercalated with Dodecyl Sulfate Ions // J. Am. Chem. Soc. 2008. V. 130. № 43. P. 14038–14039. https://doi.org/10.1021/ja804397n
- Liu B., Yuan H.T., Zhou Z.X., Song D.Y. Cyclic Voltammetric Studies of Stabilized α-Nickel Hydroxide Electrode // J. Power Sources. 1999. V. 79. № 2. P. 277–280. https://doi.org/10.1016/S0378-7753(99)00053-1
- Luo F.C., Chen Q.Y., Yin Z.L. Electrochemical Performance of Multiphase Nickel Hydroxide // Trans. Nonferrous Met. Soc. China. 2007. V. 17. № 3. P. 654–658. https://doi.org/10.1016/S1003-6326(07)60151-4
- Kiani M.A., Mousavi M.F., Ghasemi S. Size Effect Investigation on Battery Performance: Comparison between Micro- and Nano-Particles of β-Ni(OH)2 as Nickel Battery Cathode Material // J. Power Sources. 2010. V. 195. № 17. P. 5794–5800. https://doi.org/10.1016/j.jpowsour.2010.03.080
- Li W.Y., Zhang S.Y., Chen J. Synthesis, Characterization, and Electrochemical Application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 Tubes // J. Phys. Chem. B. 2005. V. 109. № 29. P. 14025–14032. https://doi.org/10.1021/jp051948o
- Elumalai P., Vasan H.N., Munichandraiah N. Electrochemical Studies of Cobalt Hydroxide – an Additive for Nickel Electrodes // J. Power Sources. 2001. V. 93. № 1–2. P. 201–208. https://doi.org/10.1016/S0378-7753(00)00572-3
- Aghazadeh M., Ghaemi M., Sabour B., Dalvand S. Electrochemical Preparation of α-Ni(OH)2 Ultrafine Nanoparticles for High-Performance Supercapacitors // J. Solid State Electrochem. 2014. V. 18. № 6. P. 1569–1584. https://doi.org/10.1007/s10008-014-2381-7
- Wei H., Lv Y.Y., Han L., Tu B., Zhao D.Y. Facile Synthesis of Transparent Mesostructured Composites and Corresponding Crack-Free Mesoporous Carbon/Silica Monoliths // Chem. Mater. 2011. V. 23. № 9. P. 2353–2360. https://doi.org/10.1021/cm2000182
- Han T.A., Tu J.P., Wu J.B., Li Y., Yuan Y.F. Electrochemical Properties of Biphase Ni(OH)2 Electrodes for Secondary Rechargeable Ni/MH Batteries // J. Electrochem. Soc. 2006. V. 153. № 4. Р. 738. https://doi.org/10.1149/1.2171829
Supplementary files
