Примесное поглощение ионами меди(II) в вольфрамсодержащем теллуритно-цинкатном стекле
- Autores: Nosov Z.K.1, Zamyatin O.A.1, Krasnov M.V.1
-
Afiliações:
- Nizhny Novgorod State University named after N. I. Lobachevsky
- Edição: Volume 61, Nº 7–8 (2025)
- Páginas: 488-493
- Seção: Articles
- URL: https://journal-vniispk.ru/0002-337X/article/view/319034
- DOI: https://doi.org/10.7868/S3034558825040126
- ID: 319034
Citar
Resumo
Sobre autores
Z. Nosov
Nizhny Novgorod State University named after N. I. Lobachevsky
Email: zaharnosov97@gmail.com
23 Gagarina Avenue, Nizhny Novgorod, 603022 Russia
O. Zamyatin
Nizhny Novgorod State University named after N. I. Lobachevsky23 Gagarina Avenue, Nizhny Novgorod, 603022 Russia
M. Krasnov
Nizhny Novgorod State University named after N. I. Lobachevsky23 Gagarina Avenue, Nizhny Novgorod, 603022 Russia
Bibliografia
- Stanworth J.E. Tellurite Glasses // Nature. 1952. V. 169. № 4301. P. 581–582. https://doi.org/10.1038/169581b0
- El-Mallawany R.A.H. Tellurite Glasses Handbook. CRC Press, 2016.
- El-Mallawany R.A.H. Tellurite Glass Smart Materials. Cham: Springer, 2018.
- Bürger H., Vogel W., Kozhukharov V. IR Transmission and Properties of Glasses in the TeO2–[RnOm, RnXm, Rn(SO4)m, Rn(PO3)m and B2O3] Systems // Infrared Phys. 1985. V. 25. № 1–2. P. 395–409. https://doi.org/10.1016/0020-0891(85)90114-9
- Hrabovsky J., Strizik L., Desevedavy F., Tazlaru S., Kucera M., Nowak L., Krystufek R., Mistrik J., Dedic V., Kopecky V., Gadret G., Wagner T., Smektala F., Veis M. Optical, Magneto-Optical Properties and Fiber-Drawing Ability of Tellurite Glasses in the TeO2–ZnO–BaO Ternary System // J. Non-Cryst. Solids. 2024. V. 624. P. 122712. https://doi.org/10.1016/j.jnoncrysol.2023.122712
- Sekiya T., Mochida N., Ohtsuka A., Tonokawa M. Normal Vibrations of Two Polymorphic Forms of TeO2 Crystals and Assignments of Raman Peaks of Pure TeO2 Glass // J. Ceram. Assoc. Jpn. 1989. V. 97. № 1132. P. 1435–1440. https://doi.org/10.2109/jcersj.97.1435
- Stegeman R., Jankovic L., Kim H., Rivero C., Stegeman G., Richardson K., Delfyett P., Guo Y., Schulte A., Cardinal T. Tellurite Glasses with Peak Absolute Raman Gain Coefficients up to 30 Times That of Fused Silica // Opt. Lett. 2003. V. 28. № 13. P. 1126–1128. https://doi.org/10.1364/OL.28.001126
- Tagiara N.S., Palles D., Simandiras E.D., Psycharis V., Kyritsis A., Kamitsos E.I. Synthesis, Thermal and Structural Properties of Pure TeO2 Glass and Zinc-Tellurite Glasses // J. Non-Cryst. Solids. 2017. V. 457. P. 116–125. https://doi.org/10.1016/j.jnoncrysol.2016.11.033
- Mori A., Ohishi Y., Sudo S. Erbium-Doped Tellurite Glass Fibre Laser and Amplifier // Electron. Lett. 1997. V. 33. № 10. P. 863–864. https://doi.org/10.1049/el:19970585
- Richards B., Jha A., Tsang Y., Binks D., Lousteau J., Fusari F., Lagatsky A., Brown C., Sibbett W. Tellurite Glass Lasers Operating Close to 2 μm // Laser Phys. Lett. 2010. V. 7. № 3. P. 177–193. https://doi.org/10.1002/lapl.200910131
- Wang J.S., Machewirth D.P., Wu F., Snitzer E., Vogel E.M. Neodymium-Doped Tellurite Single-Mode Fiber Laser // Opt. Lett. 1994. V. 19. № 18. P. 1448–1449. https://doi.org/10.1364/OL.19.001448
- Manning S., Ebendorff-Heidepriem H., Monro T.M. Ternary Tellurite Glasses for the Fabrication of Nonlinear Optical Fibres // Opt. Mater. Express. 2012. V. 2. № 2. P. 140. https://doi.org/10.1364/OME.2.000140
- O’Donnell M.D., Richardson K., Stolen R., Rivero C., Cardinal T., Couzi M., Furniss D., Seddon A.B. Raman Gain of Selected Tellurite Glasses for IR Fibre Lasers Calculated from Spontaneous Scattering Spectra // Opt. Mater. 2008. V. 30. № 6. P. 946–951. https://doi.org/10.1016/j.optmat.2007.05.010
- Moiseev A.N., Dorofeev V.V., Chilyasov A.V., Kraev I.A., Churbanov M.F., Kotereva T.V., Pimenov V.G., Snopatin G.E., Pushkin A.A., Gerasimenko V.V., Kosolapov A.F., Plotnichenko V.G., Dianov E.M. Production and Properties of High Purity TeO2–ZnO–Na2O–Bi2O3 and TeO2–WO3–La2O3–MoO3 Glasses // Opt. Mater. 2011. V. 33. № 12. P. 1858–1861. https://doi.org/10.1016/j.optmat.2011.02.042
- Dorofeev V.V., Moiseev A.N., Churbanov M.F., Snopatin G.E., Chilyasov A.V., Kraev I.A., Lobanov A.S., Kotereva T.V., Ketkova L.A., Pushkin A.A., Gerasimenko V.V., Plotnichenko V.G., Kosolapov A.F., Dianov E.M. High-Purity TeO2–WO3–(La2O3, Bi2O3) Glasses for Fiber-Optics // Opt. Mater. 2011. V. 33. № 12. P. 1911–1915. https://doi.org/10.1016/j.optmat.2011.03.032
- Снопатин Г.Е., Плотниченко В.Г., Волков С.А., Дорофеев В.В., Дианов Е.М., Чурбанов М.Ф. Коэффициент экстинкции Ni2+ в стекле (TeO2)0.78(WO3)0.22 // Неорган. материалы. 2010. Т. 46. № 8. С. 1016–1019.
- Thomas R.L., Hari M., Nampoori V.P.N., Radhakrishnan P., Thomas S. Two Photon Absorption in TeO2–ZnO Glass at Different Laser Irradiances // IOP Conf. Ser.: Mater. Sci. Eng. 2015. V. 73. P. 12090. https://doi.org/10.1088/1757-899X/73/1/012090
- Замятин О.А., Чурбанов М.Ф., Плотниченко В.Г., Сибиркин А.А., Федотова И.Г., Гаврин С.А. Удельный коэффициент поглощения меди в стекле (TeO2)0.80(MoO3)0.20 // Неорган. материалы. 2015. Т. 51. № 12. С. 1380. https://doi.org/10.7868/S0002337X15110160
- Zamyatin O.A., Plotnichenko V.G., Churbanov M.F., Zamyatina E.V., Karzanov V.V. Optical Properties of Zinc Tellurite Glasses Doped with Cu2+ Ions // J. Non-Cryst. Solids. 2018. V. 480. P. 81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025
- Замятин О.А., Лексаков Д.А., Носов З.К. Примесное поглощение ионами меди(II) в молибденсодержащем теллуритно-цинкатном стекле // Неорган. материалы. 2021. Т. 57. № 11. C. 1246–1252. https://doi.org/10.31857/S0002337X21110142
- Краснов М.В., Замятин О.А. Примесное поглощение ионами меди(II) в висмутсодержащем теллуритно-цинкатном стекле // Неорган. материалы. 2023. Т. 59. № 5. C. 540–547. https://doi.org/10.31857/S0002337X23050093
- Чукуров П.М. Меди оксиды // Химическая энциклопедия. В 5 т. 1990. C. 669–670.
- Lupu A. Thermogravimetry of Copper and Copper Oxides (Cu2O–CuO) // J. Therm. Anal. 1970. Т. 2. № 4. C. 445–458. https://doi.org/10.1007/bf01911613
- Zhu X., Wang Z., Su X., Vilarinho P.M. New Cu3TeO6 Ceramics: Phase Formation and Dielectric Properties // ACS Appl. Mater. Interfaces. 2014. V. 6. № 14. P. 11326–11332. https://doi.org/10.1021/am501742z
- Gospodinov G.G. Phase States of Copper Orthotellurates in an Aqueous Medium and in Thermolysis // J. Mater. Sci. Lett. 1992. V. 11. № 21. P. 1460–1462. https://doi.org/10.1007/BF00729664
- Kivelson D., Neiman R. ESR Studies on the Bonding in Copper Complexes // J. Chem. Phys. 1961. V. 35. № 1. P. 149–155. https://doi.org/10.1063/1.1731880
- Siegel I., Lorenc J.A. Paramagnetic Resonance of Copper in Amorphous and Polycrystalline GeO2 // J. Chem. Phys. 1966. V. 45. № 6. P. 2315–2320. https://doi.org/10.1063/1.1727927
- Klonkowski A. The Structure of Sodium Aluminosilicate Glass // Phys. Chem. Glasses. 1983. V. 24. № 6. P. 166–171.
- Duran A., Fernandz Navarro J.M. The Colouring of Glass by Cu2+ Ions // Phys. Chem. Glasses. 1985. V. 26. № 4. С. 125–131.
- Hu X.-F., Wu S.-Y., Li G.-L., Zhang Z.-H. Theoretical Investigations of the Spin Hamiltonian Parameters and Local Tetragonal Distortions for Cu2+ in Crystalline and Amorphous TeO2 and GeO2 // Mol. Phys. 2014. V. 112. № 19. P. 2627–2632. https://doi.org/10.1080/00268976.2014.901566
- Dong H.-N., Zhang R. Theoretical Studies of the Electron Paramagnetic Resonance Parameters and Local Structures for Cu2+ in (100–2x)TeO2–xAg2O–xWO3 Glasses // Rev. Mex. Fís. 2021. V. 67. № 1. P. 1–6. https://doi.org/10.31349/RevMexFis.67.1
- Ramadevudu G., Shareefuddin M., Sunitha Bai N., Lakshmipathi Rao M., Narasimha Chary M. Electron Paramagnetic Resonance and Optical Absorption Studies of Cu2+ Spin Probe in MgO–Na2O–B2O3 Ternary Glasses // J. Non-Cryst. Solids. 2000. V. 278. № 1–3. P. 205–212. https://doi.org/10.1016/S0022-3093(00)00255-6
- Gayathri P.P., Vijaya K.R., Chandra M.V. Characterization of ZnO Based Boro Tellurite Glass System // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2016. V. 57. № 2. P. 104–110. https://doi.org/10.13036/17533562.57.2.013
- Okasha A., Marzouk S.Y., Abdelghany A.M. Design a Tunable Glasses Optical Filters Using CuO Doped Fluoroborate Glasses // Opt. Laser Technol. 2021. V. 137. P. 106829. https://doi.org/10.1016/j.optlastec.2020.106829
- Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Alkali Zinc Borosulphate Glasses // J. Non-Cryst. Solids. 1990. V. 124. № 2–3. P. 216–220. https://doi.org/10.1016/0022-3093(90)90265-N
- Narendra G.L., Sreedhar B., Rao J.L., Lakshman S.V.J. Electron Spin Resonance and Optical Absorption Spectra of Cu2+ Ions in Na2SO4–ZnSO4 Glasses // J. Mater. Sci. 1991. V. 26. № 19. P. 5342–5346. https://doi.org/10.1007/BF01143231
- Upender G., Devi C.S., Kamalaker V., Mouli V.C. The Structural and Spectroscopic Investigations of Ternary Tellurite Glasses, Doped with Copper // J. Alloys Compd. 2011. V. 509. № 19. P. 5887–5892. https://doi.org/10.1016/j.jallcom.2011.03.001
- Upender G., Prasad M., Mouli V.C. Vibrational, EPR and Optical Spectroscopy of the Cu2+ Doped Glasses with (90-x)TeO2–10GeO2–xWO3 (7.5 ≤ x ≤ 30) Composition // J. Non-Cryst. Solids. 2011. V. 357. № 3. P. 903–909. https://doi.org/10.1016/j.jnoncrysol.2010.12.001
- Kamalaker V., Upender G., Prasad M., Chandra Mouli V. Infrared, ESR and Optical Absorption Studies of Cu2+ Ions Doped in TeO2–ZnO–NaF Glass System // Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B. 2010. V. 48. № 10. С. 709–715.
- Newns G.R., Pantelis P., Wilson J.L., Uffen R.W.J., Worthington R. Absorption Losses in Glasses and Glass Fibre Waveguides // Opt. Electron. 1973. V. 5. № 4. P. 289–296. https://doi.org/10.1007/BF02057128
- Spierings G.A.C.M. Optical Absorption of Transition Metals in Alkali Lime Germanosilicate Glasses // J. Mater. Sci. 1979. V. 14. № 10. P. 2519–2521. https://doi.org/10.1007/BF00737045
- Keppler H. Crystal Field Spectra and Geochemistry of Transition Metal Ions in Silicate Melts and Glasses // Am. Mineral. 1992. V. 77. № 1–2. P. 62–75.
- France P.W., Carter S.W., Williams J.R. Effects of Atmosphere Control on the Oxidation States of 3d Transition Metals in ZrF4 Based Glasses // MSF. 1985. V. 5–6. P. 353–359. https://doi.org/10.4028/www.scientific.net/MSF.5-6.353
Arquivos suplementares
