Characterization of the Fine Valence XPS Structure of Actinide Dioxides on the Basis of the Electronic Structure Modeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, theoretical dependences of the width Г(eV) of the X-ray photoelectron spectra of the outer (OVMO) and inner (IVMO) valence molecular orbitals electrons without taking into account the An 6s electrons, as well as the intensities ratio of these spectra (IOVMO/IIVMO = OVMO/IVMO) calculated by the relativistic discrete variation method for AnO2 (An = Th–Lr) have been obtained depending on the atomic number Z. Satisfactory agreement has been established with the available relevant experimental data for AnO2 of light actinides. The decrease in the OVMO XPS width in the Pa–Lr series is associated with a shift in the partial density of states of the An 5f electrons to the OVMO bottom while the increase in the IVMO width is mainly due to an increase in the magnitude of the spin-orbit splitting (ΔEsl) of the An 6p-electrons. It has been found that the OVMO intensity is mainly related to the An 5f- and 6d-electrons, since the photoionization cross sections for these electrons are significantly larger than those for the An 7s-, 7p-, and O 2p-electrons.

About the authors

Yu. A Teterin

Lomonosov Moscow State University; National Research Center "Kurchatov Institute"

Moscow, Russian Federation; Moscow, Russian Federation

A. E Putkov

National Research Center "Kurchatov Institute"

Moscow, Russian Federation

M. V Ryzhkov

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences

Yekaterinburg, Russian Federation

K. I Maslakov

Lomonosov Moscow State University

Moscow, Russian Federation

A. Yu Teterin

National Research Center "Kurchatov Institute"

Email: antonxray@yandex.ru
Moscow, Russian Federation

K. E Ivanov

National Research Center "Kurchatov Institute"

Moscow, Russian Federation

S. N Kalmykov

National Research Center "Kurchatov Institute"

Moscow, Russian Federation

V. G Petrov

Lomonosov Moscow State University

Moscow, Russian Federation

References

  1. Katz J.J., Seaborg G.T., MorssKatz J.J., Seaborg G.T., Morss L.R. The chemistry of the actinide elements. L.; N.Y.: Chapman and Hall, 1986.
  2. Teterin Yu.A., Teterin A.Yu. Structure of X-ray photoelectron spectra of light actinide compounds // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/10.1070/RC2004v07n06ABEH000821
  3. Legg F., Harding L.M., Lewis J.C., Nicholls R., Green H., Steele H., Springell R. Epitaxial light actinide oxide thin films // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssrn.4573818
  4. Rai B.K., Bretana A., Morrison G., Greer R., Gofryk K., zur Loye H.-C. Crystal structure and magnetism of actinide oxides: a review // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.48550/arXiv.2403.01634
  5. Pereiro F.A., Galley S.S., Jackson J.A., Shafer J.C. Contemporary assessment of energy degeneracy in orbital mixing with tetravalent f-block compounds // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3c03828
  6. Ryzhkov M.V., Kupryazhkin A.Ya. First-principles study of electronic structure and insulating properties of uranium and plutonium dioxides // J. Nucl. Mater. 2009. V. 384. P. 226. https://doi.org/10.1016/j.jnucmat.2008.11.011
  7. Teterin Yu.A., Tetetrin A.Yu. Modern X-ray spectral methods in the study of the electronic structure of actinide compounds: uranium oxide uO2 as an example // Nucl. Techn. Rad. Prot. 2004. V. 2. P. 3. https://doi.org/10.2298/NTRP0402003T
  8. Wang D., van Gunstren W., Chain Z. Recent advances in computational actinoid chemistry // Chem. Soc. Rev. 2012. V. 41. P. 5836. https://doi.org/10.1039/c2cs15354h
  9. Wang J., Ewing R.C., Becker U. Electronic structure and stability of hyperstoichiometric uO2+x under pressure // Phys. Rev. B. 2013. V. 88. P. 024109. https://doi.org/10.1103/PhysRevB.88.024109
  10. Wen X.-D., Martin R.L., Henderson T.M., Scuseria G.E. Density functional theory studies of the electronic structure of solid state actinide oxides // Chem. Rev. 2013. V. 113. P. 1063. https://doi.org/10.1021/cr300374y
  11. Zaitsevskii A., Skripnikov L.V., Titov A.V. Chemical bonding and effective atomic states of actinides in higher oxide molecules // Mendeleev Commun. 2016. V. 26. P. 307. https://doi.org/10.1016/j.mencom.2016.07.013
  12. Gouder T., Seibert A., Havela L., Rebizant J. Search for higher oxides of Pu: A photoemission study // Surf. Sci. 2007. V. 601. P. L77. https://doi.org/10.1016/j.susc.2007.04.259
  13. Seibert A., Gouder T., Huber F. Formation and stability of actinide oxides: a valence band photoemission study // Radiochim. Acta. 2009. V. 97. № 4–5. P. 247. https://doi.org/10.1524/ract.2009.1605
  14. Idriss H. Surface reactions of uranium oxide powder, thin films and single crystals // Surf. Sci. Rep. 2010. V. 65. P. 67. https://doi.org/10.1016/j.surfrep.2010.01.001
  15. Veal B.W., Diamond H., Hoekstra H.R. X-ray photoelectron-spectroscopy study of oxides of the transuranium elements Np, Pu, Am, Cm, Bk and Cf // Phys. Rev. B. 1977. V. 15. P. 2929. https://doi.org/https://doi.org/10.1103/PhysRevB.15.2929
  16. Rosen A., Ellis D.E. Relativistic molecular calculations in the Dirac–Slater model // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
  17. Adachi H. Relativistic molecular orbital theory in the Dirac–Slater model // Technol. Rep. Osaka univ. 1972. V. 1392. P. 569.
  18. Gunnarsson O., Lundqvist B.I. Exchange and correlation in atoms, molecules and solids by the spin-density-functional formalism // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
  19. Pyykko P., Toivonen H. Tables of representation and rotation matrices for the relativistic irreducible representations of 38 point groups // Acta Acad. Aboensis. Ser. B. 1983. V. 43. 50 p.
  20. Varshalovish D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988. 439 p.
  21. Teterin Yu.A., Ryzhkov M.V., Putkov A.E., Maslakov K.I., Teterin A.Yu., Ivanov K.E., Kalmykov S.N., Petrov V.G. Chemical bond nature and structure of X-ray photoelectron spectrum of PaO2 // Russ. J. Inorg. Chem. 2022. V. 67. № 6. P. 881. https://doi.org/10.1134/S0036023622060274
  22. Тетерин Ю.А., Маслаков К.И., Рыжков М.В., Трапарич О.А., Вукчевич Л., Тетерин А.Ю., Панов А.Д. Природа химической связи в диоксиде урана uO2 // Радиохимия. 2005. Т. 47. № 3. С. 193.
  23. Maslakov K.I., Teterin Yu.A., Ryzhkov M.V., Popel A.J., Teterin A.Yu., Ivanov K.E., Kalmykov S.N., Petrov V.G., Farnan I. The nature of the chemical bond in uO2 // Int. J. Quantum Chem. 2019. P. 119:e26040. https://doi.org/10.1002/qua.26040.
  24. Ryzhkov M.V., Kovalenko M.A., Kupryazhkin A.Ya., Gupta S.K. Electronic structure and effective charges on atoms near anion point defects in uranium dioxide // Comp. Condens Matter. 2019. V. 18. P. e00353-9. https://doi.org/10.1016/j.cocom.2018.e00353
  25. Ryzhkov M.V., Kovalenko M.A., Kupryazhkin A.Ya., Gupta S.K. Transformation of electron density distribution induced by the cation point defects in uranium dioxide // J. Radioanal. Nucl. Chem. 2020. V. 325. P. 253. https://doi.org/10.1007/s10967-020-07228-z
  26. Teterin Yu.A., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Maslakov K.I., Kalmykov St.N., Petrov V.G., Enina D.A. X-ray photoelectron spectra structure and chemical bond nature in NpO2 // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
  27. Teterin Yu.A., Maslakov K.I., Teterin A.Yu., Ivanov K.E., Ryzhkov M.V., Petrov V.G., Enina D.A., Kalmykov St.N. Electronic structure and chemical bonding in PuO2 // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
  28. Gelius U., Allan C.J., Johansson G., Siegbahn H., Allison D.A., Siegbahn K. The ESCA spectra of benzene and Thei-electronic series, thiophene, pyrrole and furan // Phys. Scr. 1971. V. 3. P. 237. https://doi.org/10.1088/0031-8949/3/5/008
  29. Yarzhemsky V.G., Nefedov V.I., Amusya M.Ya., Cherepkov N.A., Chernysheva L.V. Relative intensities in X-ray photoelectron spectra part VIII // J. Electron. Spectr. Relat. Phenom. 1981. V. 23. № 2. P. 175. https://doi.org/10.1016/0368-2048(81)80033-3
  30. Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A., Trzhaskovskaya M.B. Photoionization cross sections of ground and excited valence levels of actinides // Nucl. Techn. Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP1202103Y
  31. Putkov A.E., Teterin Yu.A., Ryzhkov M.V., Teterin A.Yu., Maslakov K.I., Ivanov K.E., Kalmykov S.N., Petrov V.G. Electronic structure and nature of chemical bonds in BkO2 // Russ. J. Phys. Chem. A. 2021. V. 95. № 6. P. 1169. https://doi.org/10.1134/S0036024421060212

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).