Влияние дисперсности компонентов на транспортные свойства композитов СaWO4–Al2O3

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

В работе исследовано влияние размера зерен оксида алюминия и вольфрамата кальция на транспортные свойства композитов (1-x)СaWO4xAl2O3 с мольной долей оксида алюминия x ≤ 0.35. Фазовый состав композитов и их термодинамическая стабильность подтверждены соответственно методами рентгенофазового анализа и термогравиметрии в совокупности с дифференциальной сканирующей калориметрией. Морфологию исследовали электронно-микроскопическим методом, а элементный состав – рентгеноспектральным микроанализом. Электропроводность композитов, измеренная методом электрохимического импеданса, исследована в зависимости от температуры, давления кислорода в газовой фазе, содержания дисперсной добавки (оксида алюминия), степени дисперсности компонентов. Обнаружено, что проводимость композитов (1-x)СaWO4xAl2O3 с содержанием оксида алюминия 5–10 мол.% более чем на порядок выше проводимости СaWO4. Варьирование среднего размера зерен нанопорошка Al2O3 в пределах 21–82 нм не привело к существенному изменению проводимости композитов, что связано с полидисперсностью оксида алюминия, а уменьшение среднего размера зерен СaWO4 с 6.4 до 1.6 мкм привело к росту проводимости композитов в 2 раза.

全文:

受限制的访问

作者简介

А. Гусева

Уральский федеральный университет

Email: Natalie.Pestereva@urfu.ru
俄罗斯联邦, ул. Мира, 19, Екатеринбург, 620002

Н. Пестерева

Уральский федеральный университет

编辑信件的主要联系方式.
Email: Natalie.Pestereva@urfu.ru
俄罗斯联邦, ул. Мира, 19, Екатеринбург, 620002

А. Тушкова

Уральский федеральный университет

Email: Natalie.Pestereva@urfu.ru
俄罗斯联邦, ул. Мира, 19, Екатеринбург, 620002

О. Русских

Уральский федеральный университет

Email: Natalie.Pestereva@urfu.ru
俄罗斯联邦, ул. Мира, 19, Екатеринбург, 620002

Л. Адамова

Уральский федеральный университет

Email: Natalie.Pestereva@urfu.ru
俄罗斯联邦, ул. Мира, 19, Екатеринбург, 620002

参考

  1. Уваров Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд. СО РАН, 2008. 258 с.
  2. Nemudry A., Uvarov N. Nanostructuring in Composites and Grossly Nonstoichiometric or Heavily Doped Oxides // Solid State Ionics. 2006. V. 177. P. 2491-2494. https://doi.org/10.1016/j.ssi.2006.05.002
  3. Улихин А.С., Уваров Н.Ф. Ионная проводимость композиционных твердых электролитов (C4H9)4NBF4–Al2O3 // Электрохимия. 2021. T. 57. С. 608-612. https://doi.org/10.31857/S0424857021080144
  4. Оболкина Т.О., Гольдберг М.А., Антонова О.С., Смирнов С.В., Тютькова Ю.Б., Егоров А.А., Смирнов И.В., Коновалов А.А., Баринов С.М., Комлев В.С. Влияние комплексных добавок на основе оксидов железа, кобальта, марганца и силиката натрия на спекание и свойства низкотемпературной керамики 3Y–TZP–Al2O3 // Журн. неорган. химии. 2021. T. 66. № 8. C. 1120–1125. https://doi.org/10.31857/S0044457X21080195
  5. Saad A., Fedotov A.K., Svito I.A., Mazanik A.V., Andrievsky B.V., Patryn A.A., Kalinin Yu.E., Sitnikov A.V. AC Conductance of (Co0.45Fe0.45Zr0.10)x (Al2O3)1−x Nanocomposites // Prog. Solid State Chem. 2006. V. 34. P. 139-146. https://doi.org/10.1016/j.progsolidstchem.2005.11.011
  6. Knauth P. Ionic Conductor Composites: Theory and Materials // J. Electroceram. 2000. V. 5. P. 111-125. https://doi.org/10.1023/A:1009906101421
  7. Liang С.С. Conduction Characteristics of the Lithium Iodide-Aluminium Oxide Solid Electrolytes // J. Electrochem. Soc. 1973. V. 120(10). P. 1289-1292. https://doi.org/10.1149/1.2403248
  8. Mateyshina Y., Uvarov N. The Effect of Oxide Additives on the Transport Properties of Cesium Nitrite // Solid State Ionics. 2018. V. 324 P. 1. https://doi.org/10.1016/j.ssi.2018.05.017
  9. Ulihin A.S., Uvarov N.F., Rabadanov K.S., Gafurov M.M., Gerasimov K.B. Thermal, Structural and Transport Properties of Composite Solid Electrolytes (1-x)(C4H9)4NBF4–xAl2O3 // Solid State Ionics. 2022. V. 378. Р.115889. https://doi.org/10.1016/j.ssi.2022.115889
  10. Ulikhin A.S., Uvarov N.F., Kovalenko K.A., Fedin V.P. Ionic Conductivity of Tetra-n-Butylammonium Tetrafluoroborate in the MIL-101(Cr) Metal-Organic Framework // Micropor. Mesopor. Mater. 2022. V. 332. Р.111710. https://doi.org/10.1016/j.micromeso.2022.111710
  11. Уваров Н.Ф. Хайретдинов Э.Ф., Братель Н.Б. Композиционные твердые электролиты в системе AgI – Al2O3 // Электрохимия. 1993. T. 29. № 11. C.1406-1410.
  12. Guseva A., Pestereva N., Uvarov N. New Oxygen Ion Conducting Composite Solid Electrolytes Sm2(WO4)3-WO3 // Solid State Ionics. 2023. V. 394. P. 116196. https://doi.org/10.1016/j.ssi.2023.116196
  13. Jow T., Wagner J.B. Effect of Dispersed Alumina Particles on the Electrical Conductivity of Cuprous Chloride // J. Electrochem. Soc. 1979. V. 126. P. 1963-1972.
  14. Shahi K., Wagner J.B. Ionic Conductivity and Thermoelectric Power of Pure and Al2O3‐Dispersed AgI // J. Electrochem. Soc. 1981. V. 128. P. 6–13.
  15. Гусева А.Ф., Пестерева Н.Н., Кузнецов Д.К., Бояршинова А.А., Гардт В.А. Электропроводность композитов MeWO4–Al2O3 (Me – Ca, Sr) Al2O3 // Электрохимия. 2023. Т. 59. № 4. С. 208–215. https://doi.org/10.31857/S0424857023040072
  16. Mahato N., Banerjee A., Gupta A., Omar S., Balani K. Progress in Material Selection for Solid Oxide Fuel Cell Technology: A Review // Prog. Мater. Sci. 2015. V. 72. P. 141. https://doi.org/10.1016/j.pmatsci.2015.01.001
  17. Потанина Е.А., Орлова А.И., Нохрин А.В., Михайлов Д.А., Болдин М.С., Сахаров Н.В., Белкин О.А., Ланцев Е.А., Токарев М.Г., Чувильдеев В.Н. Мелкозернистые вольфраматы SrWO4 и NaNd(WO4)2 со структурой шеелита, полученные методом искрового плазменного спекания // Журн. неорган. химии. 2019. T. 64. № 3. C. 243–250. https://doi.org/10.1134/S0044457X19030164
  18. Repelin Y., Husson E. Etudes Structurales d’Alumines de Transition. I-Alumines Gamma et Delta // Mater. Res. Bull. 1990. V. 25. P. 611-621.
  19. Запольский А.К. Сернокислотная переработка высококремнистого алюминиевого сырья. Киев: Наук. думка, 1981. 208 с.
  20. Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Типография Паладин, ООО «Принта», 2010. 288 с.
  21. Пестерева Н.Н., Гусева А.Ф., Василенко Н.А., Бекетов И.В., Селезнёва Н.В. Транспортные свойства композитов La2(WO4)3–Al2O3 // Электрохимия. 2023. Т. 59. № 12. С. 894–904. https://doi.org/10.31857/S0424857023120095
  22. Пестерева Н.Н., Гусевa А.Ф., Белятовa В.А., Корона Д.В. Кислородно-ионные композиты MWO4–SiO2 (M – Sr, Ba) // Электрохимия. 2023.Т. 59. № 8. C. 448–455. https://doi.org/10.31857/S0424857023080066
  23. Guseva А., Pestereva N., Otcheskikh D., Kuznetsov D. Electrical Properties of CaWO4–SiO2 Composites // Solid State Ionics. 2021. V. 364 P.115626. https://doi.org/10.1016/j.ssi.2021.115626.
  24. Гусева А.Ф., Пестерева Н.Н., Отческих Д.Д., Востротина Е.Л. Электропроводность композитов Al2(WO4)3–WO3 и Al2(WO4)3–AL2O3 // Электрохимия. 2019. Т. 55. № 6. С. 721-725. https://doi.org/10.1134/S0424857019060094
  25. Гусева А.Ф., Пестерева Н.Н. Синтез и электрические свойства композитов Nd2(WO4)3–SiO2 // Журн. неорган. химии. 2023. Т. 68. № 3. С. 426-432. https://doi.org/10.31857/S0044457X2260164X
  26. Чеботин В.Н., Перфильев М.В. Электрохимия твердых электролитов. М.: Химия, 1978. 312 с.
  27. Пестерева Н.Н., Сафонова И.Г., Нохрин С.С., Нейман А.Я. Влияние дисперсности MWO4 (M = Ca, Sr, Ba) на интерфейсные процессы в ячейках (+/–)WO3|MWO4|WO3(–/+) и транспортные свойства метакомпозитных фаз // Журн. неорган. химии. 2010. Т. 55. № 6. С. 940-946.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X–ray diffraction patterns of nanodisperse Al2O3 (a), Shawo4 (b) and 0.50CaWO4–0.50Al2O3 (c) composite, processed using the Rietveld method: dots – experimental data, green strokes - angular positions of reflexes, black line – calculated profile, blue line – difference between experimental data and a theoretical profile.

下载 (186KB)
3. Fig. 2. Data from TG–DSC Al2O3 (a) and a mixture of 0.50CaWO4–0.50Al2O3 (b).

下载 (178KB)
4. Fig. 3. TEM image of nanodisperse Al2O3 (Sk = 40 m2/g) (a); SEM images of chips of CaWO4 briquettes (b), 0.99CaWO4–0.01Al2O3 composite (c) and EDA results (c).

下载 (393KB)
5. 4. Particle size distribution: CaWO4 – unpolished (1) and crushed in a planetary mill (2).

下载 (203KB)
6. Fig. 5. Impedance hodographs of composite composition 0.97CaWO4–0.03Al2O3, obtained at different temperatures, with an equivalent circuit.

下载 (114KB)
7. Fig. 6. Temperature dependences of electrical conductivity of composites (1-x)CaWO4–xAl2O3 (Sk Al2O3 = = 77 m2/g).

下载 (99KB)
8. Fig. 7. Dependences of the conductivity of composites (1-x)SHAWO4–xAl2O3 with a different specific surface area of Al2O3 from the molar content of aluminum oxide.

下载 (74KB)
9. Figure 8. Dependences of the conductivity of composites (1-x)SHAWO4–xAl2O3 with different grain sizes depending on the molar content of aluminum oxide.

下载 (77KB)

版权所有 © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».