Comparison of Parallel Implementations of the Branch-and-Bound Method for Shared Memory Systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Four parallel algorithms are considered that implement the branch-and-bound method (BnB) for solving problems of finding a global minimum. The algorithms are designed for computing systems with shared memory. The BnB is based on two basic operations: branching and eliminating. To implement the elimination operation, interval arithmetic is used, which for real intervals defines operations similar to ordinary arithmetic. The main difference between the algorithms lies in the different implementation of storing the list of subproblems. In the process of testing on a representative set of test problems, the speed of the algorithms, their scalability, and their resistance to search anomalies are investigated.

About the authors

A. Yu. Gorchakov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333, Moscow, Russia

Email: agorchakov@frccsc.ru
Россия, Москва

M. A. Posypkin

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, 119333, Moscow, Russia

Author for correspondence.
Email: mposypkin@frccsc.ru
Россия, Москва

References

  1. Евтушенко Ю.Г. Численный метод поиска глобального экстремума функций (перебор на неравномерной сетке) // ЖВМ и МФ. 1971. Т. 11. № 6. С. 1390–1403.
  2. Lawler E.L., Wood D.E. Branch-and-Bound Methods: A survey // Operations research. 1966. V. 14. № 4. P. 699–719.
  3. Евтушенко Ю.Г., Посыпкин М.А. Применение метода неравномерных покрытий для глобальной оптимизации частично целочисленных нелинейных задач // ЖВМ и МФ. 2011. Т. 51. № 8. С. 1376–1389.
  4. Karnopp D.C. Random Search Techniques for Optimization Problems // Automatica. 1963. V. 1. № 2–3. P. 111–121.
  5. Solis F.J., Wets R.J.B. Minimization by Random Search Techniques // Mathematics of Operations Research. 1981. V. 6. № 1. P. 19–30.
  6. Marte R., Lozano J.A., Mendiburu A. et al. Multi-start Methods // Handbook of Heuristics. Cham: Springer, 2018. P. 155–175.
  7. Marte R., Aceves R., LeГin M.T at al. Intelligent Multi-start Methods // Handbook of Heuristics. Cham: Springer, 2019. P. 221–243.
  8. Амирханова Г.А., Горчаков А.Ю., Дуйсенбаева А.Ж., Посыпкин М.А. Метод мультистарта с детерминированным механизмом рестарта // Вестн. С.-Петербургского ун-та. Прикладная математика. Информатика. Процессы управления. 2020. Т. 16. № 2. С. 100–111.
  9. Зайцев А.А., Курейчик В.В., Полупанов А.А. Обзор эволюционных методов оптимизации на основе роевого интеллекта // Изв. Южного федерального ун-та. Технические науки. 2010. Т 113. № 12. С. 7–12.
  10. Crainic T.G., Le Cun B., Roucairol C. Parallel Branch-and-bound Algorithms // Parallel Combinatorial Optimization. New Jersey: John Wiley & Sons, Inc., 2006. P. 1–28.
  11. Casado L.G., Martinez J.A., García I. et al. Branch-and-bound Interval Global Optimization on Shared Memory Multiprocessors // Optimization Methods & Software. 2008. V. 23. № 5. P. 689–701.
  12. Posypkin M., Usov A. Implementation and Verification of Global Optimization Benchmark Problems // Open Engineering. 2017. V 7. № 1. P. 470–478.
  13. Land A.H., Doig A.G. An Automatic Method of Solving Discrete Programming Problems // Econometrica. 1960. V. 28. № 3. C. 497–520.
  14. Van Der Pas R., Stotzer E., Terboven C. Using OpenMP-The Next Step: Affinity, Accelerators, Tasking, and SIMD. London: MIT Press, 2017.
  15. Rabinovich S.G., Rabinovich M. Evaluating Measurement Accuracy. N.Y.: Springer, 2010.
  16. Dekking F.M., Kraaikamp C., Lopuhaí H.P. et al. A Modern Introduction to Probability and Statistics: Understanding why and how. London: Springer, 2005.
  17. Efron B., Tibshirani R. J. A An Introduction to the Bootstrap. Boca Raton: CRC press, 1994.
  18. Helwig N.E. Bootstrap Confidence Intervals // Twin:University of Minnesota, 2017.
  19. Virtanen P.,Gommers R., Oliphant T.E. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python // Nature methods. 2020. V. 17. № 3. C. 261–272.
  20. Положение о ЦКП “Информатика”. 2020. URL: http://www.frccsc.ru/ ckp (onlineНѕ accessed: 2020-07-23).

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (61KB)
3.

Download (68KB)
4.

Download (88KB)
5.

Download (89KB)

Copyright (c) 2023 А.Ю. Горчаков, М.А. Посыпкин

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».