ГЛОБАЛЬНАЯ УСТОЙЧИВОСТЬ ГИБРИДНОЙ АФФИННОЙ СИСТЕМЫ 4-ГО ПОРЯДКА

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Исследуемая гибридная аффинная система возникает при применении импульсного управления специального вида к цепочке четырех интеграторов. Цель управления – стабилизировать систему в начале координат так, чтобы система приближалась к состоянию равновесия по заданной желаемой (целевой) траектории. Целевая траектория определена неявно как траектория интегратора второго порядка, стабилизируемого с помощью обратной связи в виде вложенных сатураторов. Задача исследования – найти диапазон изменения коэффициентов обратной связи, при которых система глобально устойчива. Показано, что задача сводится к более простой задаче установления устойчивости линейной системы второго порядка с переключениями с зависящим от состояния законом переключений. Доказано, что последняя устойчива при любом законе переключений.

About the authors

ИПУ РАН

Author for correspondence.
Email: tot1983@inbox.ru
Россия, Москва

ИПУ РАН

Author for correspondence.
Email: alexanderpesterev.ap@gmail.com
Россия, Москва

References

  1. Goebel R., Sanfelice R.G., Teel A.R. Hybrid Dynamical Systems: Modeling, Stability, and Robustness. New Jersey: Princeton University Press, 2012.
  2. Teel A.R. Global Stabilization and Restricted Tracking for Multiple Integrators with Bounded Controls // Systems & Control Letters. 1992. V. 18. P. 165–171.
  3. Teel A.R. A Nonlinear Small Gain Theorem for the Analysis of Control Systems with Saturation // Trans. Autom. Contr. IEEE. 1996. V. 41. P. 1256–1270.
  4. Pao L., Franklin G. Proximate Time-optimal Control of Third-order Servomechanisms // IEEE Transactions on Automatic Control. 1993. V. 38. P. 560–580.
  5. Polyakov A., Efimov D., Perruquetti W. Robust Stabilization of Mimo Systems in Finite/fixed Time // Int. J. Robust. Nonlinear Control. 2016. V. 26. P. 69–90.
  6. Kurzhanski A.B., Varaiya P. Solution Examples on Ellipsoidal Methods: Computation in High Dimensions. Cham: Springer, 2014. Ch. 4. P. 147–196.
  7. Lin H., Antsaklis P.J. Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results // IEEE Transactions on Automatic Control 2009. V. 54. P. 308–322.
  8. Pyatnitskiy E., Rapoport L. Criteria of Asymptotic Stability of Differential Inclusions and Periodic Motions of Time-varying Nonlinear Control Systems // IEEE Transactions on Circuits and Systems. Fundamental Theory and Applications. 1996. V. 43. P. 219–229.
  9. Serieye M., Albea-Sánchez C., Seuret A., Jungers M. Stabilization of Switched Affine Systems via Multiple Shifted Lyapunov Functions // IFAC-PapersOnLine. 2020. V. 53. P. 6133–6138.
  10. Pesterev A.V., Morozov Y.V. Optimizing Coefficients of a Controller in the Point Stabilization Problem for a Robot-wheel // Optimization and Applications. Montenegro. 2021. V. 13078. P. 191–202.
  11. Olfati-Saber R. Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Ph.D. Thesis. Cambridge: Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science, 2001.
  12. Hua M.-D., Samson C. Time Sub-optimal Nonlinear Pi and Pid Controllers Applied to Longitudinal Headway Car Control// International Journal of Control. 2011. V. 84. P. 1717–1728.
  13. Marconi L., Isidori A. Robust Global Stabilization of a Class of Uncertain Feedforward Nonlinear Systems // Systems & Control Letters. 2000. V. 41. P. 281–290.
  14. Pesterev A.V., Morozov Y.V. Stabilization of a Cart with Inverted Pendulum // Automation and Remote Control. 2022. V. 83. P. 78–91.
  15. Gantmacher F. Matrix theory. 5th ed. M.: Fizmatlit, 2010.
  16. Andronov A.A., Leontovich E., Gordon I.I., Maier A. Qualitative Theory of Second-order Dynamic Systems. New Jersey: Wiley, 1973.
  17. Boyd S., Ghaoui L.E., Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
  18. Pesterev A.V. Construction of the Best Ellipsoidal Approximation of the Attraction Domain in Stabilization Problem for a Wheeled Robot // Automation and Remote Control. 2011. V. 72. P. 512–528.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (93KB)
3.

Download (99KB)
4.

Download (118KB)
5.

Download (82KB)
6.

Download (113KB)

Copyright (c) 2023 Ю.В. Морозов, А.В. Пестерев

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».