Максимизация дальности полета для упрощенной модели летательного аппарата

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается задача максимизации дальности полета для упрощенной модели летательного аппарата с учетом влияния количества топлива на динамику центра масс. Предполагается, что движение происходит в вертикальной плоскости под действием однородных сил тяжести и сопротивления среды. Кроме того, имеются активная сила тяги и возможность изменять угол наклона траектории. Эти параметры приняты в качестве управлений. Построена область в пространстве исходных переменных, для которой решена задача оптимального синтеза. Показано, что в этой области тяга может быть максимальной, нулевой или особой. Установлено количество и порядок следования участков траектории с соответствующей тягой.

Об авторах

Е. В. Малых

МГУ им. М.В. Ломоносова

Автор, ответственный за переписку.
Email: wyvling@gmail.com
Россия, Москва

О. Ю. Черкасов

МГУ им. М.В. Ломоносова; Университет МГУ-ППИ

Email: oyuche@yandex.ru
Россия, Москва; Шэньчжэнь, Китай

Список литературы

  1. Goldstine H.H. A History of the Calculus of Variations from the 17 Th Through the 19 Th Century, Studies in the History of Mathematics and Physical Sciences. V.5. New York-Heidelberg-Berlin, Springer-Verlag, 1980. P. 410.
  2. Ashby N., Britten W. E., Love W. F., Wyss W. Brachistochrone with Coulomb Friction // Amer. J. Phys. 1975. V. 43. № 10. P. 902–905.
  3. Гершман М.Д., Нагаев Р. Ф. О фрикционной брахистохроне // МТТ 1976. № 4. С. 85–88.
  4. Lipp S.C. Brachistochrone with Coulomb Friction // SIAM J. Control Optim. 1997. V. 35. № 2. P. 562–584.
  5. Van der Heijden A.M.A., Diepstraten J.D. On the Brachistochrone with Dry Friction // Intern. J. Non-Linear Mech. 1975. V. 10. № 2. P. 97–112.
  6. Šalinić S. Contribution to the Brachistochrone Problem with Coulomb Friction // Acta Mech. 2009. V. 208. P. 97–115.
  7. Sumbatov A.S. Brachistochrone with Coulomb friction as the Solution of an Isoperimetrical Variational Problem // Intern. J. Non–Linear Mech. 2017. V. 88. P. 135–141.
  8. Hayen J.C. Brachistochrone with Coulomb Friction // Int. J. Non–Linear Mech. 2005. V. 40. P. 1057–1075.
  9. Голубев Ю.Ф. Брахистохрона с трением // Изв. РАН. ТиСУ. 2010. № 5. С. 41–52. https://doi.org/10.1134/S1064230710050060
  10. Vratanar B., Saje M. On the Analytical Solution of the Brachistochrone Problem in a Non-conservative Field // Intern. J. Non-Linear Mechanics. 1998. V. 33. № 3. P. 489–505.
  11. Зароднюк А.В., Черкасов О.Ю. Качественный анализ оптимальных траекторий движения материальной точки в сопротивляющейся среде и задача о брахистохроне // Изв. РАН. ТиСУ. 2015. № 1. С. 41–49.
  12. Šalinić S., Obradović A., Mitrović Z., Rusov S. Brachistochrone with Limited Reaction of Constraint in an Arbitrary Force Field // Nonlinear Dynamics. 2012. V. 69. P. 211–222.
  13. Lemak S.S., Belousova M.D. The Brachistochrone Problem with Constraints on the Curvature of the Trajectory // IFAC PapersOnLine. Moscow. V. 54. P. 437–442.
  14. Брайсон A., Хо Ю Ши. Прикладная теория оптимального управления. М.: Мир. 1972. С. 544.
  15. Feehery W.F. Dynamic Optimization with Path Constraints (Ph. D. Thesis) Massachusetts Institute of Technology. Cambridge, 1998.
  16. Cherkasov O.Yu., Smirnova N.V. On the Brachistochrone Problem with State Constraints on the Slope Angle // Intern. J. Non-Linear Mech. 2022. V. 139.
  17. Drummond J.E., Downes G.L. The Brachistochrone with Acceleration: A Running Track // J. Optimization Theory and Applications. 1971. V. 7. № 6. P. 444–449.
  18. Вондрухов А.С., Голубев Ю.Ф. Брахистохрона с разгоняющей силой // Изв. РАН. ТиСУ. 2014. № 6. C.42–57.
  19. Зароднюк А.В., Черкасов О.Ю. О максимизации горизонтальной дальности и брахистохроне с разгоняющей силой и вязким трением // Изв. РАН. ТиСУ. 2017. № 4. С. 3–10.
  20. Smirnova N.V, Cherkasov O.Yu. Range Maximization Problem with a Penalty on Fuel Consumption in the Modified Brachistochrone Problem // Applied Mathematical Modelling. 2021. V. 91. P. 581–589. https://doi.org/10.1016/j.apm.2020.10.001
  21. Руссаловская А.В., Иванов Г.И., Иванов А.И. О брахистохроне точки переменной массы с трением и экспоненциальным законом истечения массы // Докл. АН УССР. Сер. А. 1973. C. 1024–1026.
  22. Jeremić O., Šalinić S., Obradović A., Mitrović Z. On the Brachistochrone of a Variable Mass Particle in General Force Fields // Mathematical and Computer Modelling. 2011. V. 54. P. 2900–2912.
  23. Menon P.K.A., Kelley H.J., Cliff E.M. Optimal Symmetric Flight with an Intermediate Vehicle Model // J. GUIDANCE. 1984. V. 8. № 3. P. 312–319.
  24. Indig N., Ben-Asher J.Z., Sigal E. Singular Control for Two-Dimensional Goddard Problems Under Various Trajectory Bending Laws // J. Guidance, Control and Dynamics 2018. V. 42. № 3. P. 1–15. https://doi.org/10.2514/1.G003670
  25. Indig N., Ben-Asher J.Z., Sigal E. Optimal Guidance with Additional Thrust Control for Various Flight Tasks // AIAA Guidance, Navigation and Control. Conf. Texas AIAA, 2017. P. 1737. https://doi.org/10.2514/6.2017-1737
  26. Goddard R.H. A Method of Reaching Extreme Altitudes. Washington, Smithsonian Institute Miscellaneous Collections, 1919. V. 7. P. 71. (Reprinted by American Rocket Society. 1946.)
  27. Охоцимский Д.Е. К теории движения ракет // ПММ. 1946, Т. 10. № 2. С. 251–272.
  28. Tsien H.S., Evans R.C. Optimum Thrust Programming for a Sounding Rocket // J. American Rocket Society. 1951. V. 21. № 5. P. 99–107.
  29. Leitmann G.A. Calculus of Variations Solution of Goddard’s Problem // Astronautica Acta. 1956. V.2. № 2. P. 55–62.
  30. Seywald H., Cliff E.M. Goddard Problem in Presence of a Dynamic Pressure Limit // J. Guid. Control Dyn. 1993. V. 6. № 4. P. 776–781. https://doi.org/10.2514/3.21080
  31. Graichen K., Kugi A., Petit N., Chaplais F. Handling Constraints in Optimal Control with Saturation Functions and System Extension // Systems & Control Letters. 2010. V. 59. № 11. P. 671–679. https://doi.org/10.1016/j.sysconle.2010.08.003
  32. Bonnans F., Martinon P., Trélat E. Singular Arcs in the Generalized Goddard’s Problem // J. Optim Theory Appl. 2008. V. 139. P. 439–461. https://doi.org/10.1007/s10957-008-9387-1
  33. Miele A. Extremization of Linear Integrals by Green’s Theorem // Mathematics in Science and Engineering. 1962. V. 5. P. 69–98 https://doi.org/10.1016/S0076-5392(08)62091-3
  34. Tsiotras P., Kelley H.J. Goddard Problem with Constrained Time of Flight // J. Guidance, Control and Dynamics. 1992. V. 15. № 2. P. 289–296. https://doi.org/10.23919/ACC.1988.4789942
  35. Охоцимский Д.Е., Энеев Т.М. Некоторые вариационные задачи, связанные с запуском искусственного спутника Земли // УФН. 1957. № 1а. С. 5–32.
  36. Голубев Ю.Ф. Метод Охоцимского-Понтрягина в теории управления и аналитической механике. Ч. 1. Метод Охоцимского-Понтрягина в теории управления // Вестн. МГУ. Сер.1. Математика, механика. 2008. № 6. С. 49–55.
  37. Cherkasov O.Y., Malykh E.V., Smirnova N.V. Brachistochrone Problem and Two-dimensional Goddard Problem // Nonlinear Dyn. 2023. V.111. P. 243–254. https://doi.org/10.1007/s11071-022-07857-x
  38. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: Наука, 1983. 393с.
  39. Габасов Р., Кириллова Ф.М. Особые оптимальные управления. М.: Наука, 1973. 256с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».