Исследование реакции йодистого водорода с атомом хлора в атмосфере над морем

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом резонансной флуоресценции (РФ) атомов хлора и атомов йода измерена константа скорости реакции атома хлора с йодистым водородом при температуре 298˚K. Значения констант реакции, измеренные обоими методами, оказались достаточно близкими. Обсуждена роль этой реакции в химии тропосферы над поверхностью океанов.

Полный текст

Доступ закрыт

Об авторах

И. К. Ларин

ФИЦ ХФ им. Н.Н. Семенова РАН

Email: eltrofimova@yandex.ru

Институт энергетических проблем химической физики им. В.Л. Тальрозе

Россия, 119334, Москва, Ленинский пр., д. 38, корп. 2

Г. Б. Прончев

ФИЦ ХФ им. Н.Н. Семенова РАН

Email: eltrofimova@yandex.ru

Институт энергетических проблем химической физики им. В.Л. Тальрозе

Россия, 119334, Москва, Ленинский пр., д. 38, корп. 2

Е. М. Трофимова

ФИЦ ХФ им. Н.Н. Семенова РАН

Автор, ответственный за переписку.
Email: eltrofimova@yandex.ru

Институт энергетических проблем химической физики им. В.Л. Тальрозе

Россия, 119334, Москва, Ленинский пр., д. 38, корп. 2

Список литературы

  1. Брасье Г., Соломон С. Аэрономия средней атмосферы: Химия и физика стратосферы и мезосферы / пер. Л.Д. Морозовой; под ред. А.Д. Данилова. Л.: Гидрометеоиздат, 1987. 412 с.
  2. Бубен С.Н., Ларин И.К, Мессинева Н.А., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Исследование атмосферной химии йодных соединений // Химическая физика. 2002. Т. 21. № 4. С. 52–60.
  3. Кикоин И.К. Таблицы физических величин. М.: Атомиздат, 1976. 1008 с.
  4. Ларин И.К., Белякова Т.И., Мессинева Н.А., Спасский А.И., Трофимова Е.М. Реакция сероводорода с атомарным хлором в области температур 273–366 K // Химическая физика. 2023. Т. 42. № 4. С. 89–94. https://doi.org/10.31857/S0207401X23040118
  5. Ларин И.К., Спасский А.И., Трофимова Е.М. Гомогенные и гетерогенные реакции углеводородов, содержащих атом йода // Изв. РАН. Энергетика. 2012. № 3. С. 44–52.
  6. Ларин И.К., Спасский А.И., Трофимова Е.М. Кинетика гетерогенной реакции сероводорода с оксидом йода в диапазоне температур 273–368 K // Химическая физика. 2020. Т. 39. № 10. С. 29–34. https://doi.org/10.31857/S0207401X2010009XI
  7. Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Образование атомарного йода в гетерогенной реакции хлора с йодметаном // Кинетика и катализ. 2010. Т. 51. № 3. С. 369–374.
  8. Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Механизм и кинетика реакции иодистого водорода с озоном // Кинетика и катализ. 2007. Т. 48. № 1. С. 5–11.
  9. Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Измерение констант скоростей реакций радикала IO с серосодержащими соединениями H2S, (CH3)2S и SO2 // Кинетика и катализ. 2000a. Т. 41. № 4. С. 485–491.
  10. Ларин И.К., Спасский А.И., Трофимова Е.М., Туркин Л.Е. Экспериментальное доказательство увеличения скорости реакции монооксида иода с монооксидом хлора на поверхности реактора // Кинетика и катализ. 2003. Т. 44. № 2. С. 218–227.
  11. Ларин К.И., Мессинёва Н.А., Невожай Д.В., Спасский А.И., Трофимова Е.М. Измерение эффективной константы скорости реакции монооксида иода с монооксидом хлора с образованием атомов иода // Кинетика и катализ. 2000b. Т. 41. № 3. С. 346–352.
  12. Физическая химия быстрых реакций / Пер. с англ. Е.В. Мозжухина и Ю.П. Петрова; Под ред. И.С. Заслонко. М.: Мир, 1976. 394 с.
  13. Arsene C., Barnes I., Becker K.H., Benter T. Gas-phase reaction of Cl with dimethyl sulfide: Temperature and oxygen partial pressure dependence of the rate coefficient // Int. J. Chem. Kinet. 2005. V. 37. P. 66–73. https://doi.org/10.1002/kin.20051
  14. Atkinson R., Baulch D.L., Cox R.A., Crowley J.N., Hampson R.F., Hynes R.G., Jenkin M.E., Rossi M.J., Troe J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens// J. Atmos. Chem. Phys. 2007. V. 7. P. 981–1191
  15. Atkinson R., Baulch D.L., Cox R.A., Hampson Jr., R.F., Kerr K.A., Troe J. Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement IV, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry // J. Phys. Chem. Ref. Data. 1992. V. 21. № 4. P. 1125–1568.
  16. Badia A., Reeves C.E., Baker A.R., Saiz-Lopez A., Volkamer R., Koenig T.K., Apel E.C., Hornbrook R.S., Carpenter L.J., Andrews S.J., Sherwen T., von Glasow R. Importance of reactive halogens in the tropical marine atmosphere: a regional modelling study using WRF-Chem // Atmos. Chem. Phys. 2019. V. 19. P. 3161–3189. https://doi.org/10.5194/acp-19-3161-2019.
  17. Behnke W., Zetsch C. Heterogeneous formation of chlorine atoms from various aerosols in the presence of O3 and HCl // J. Aerosol. Sci. 1989. V. 20. № 8. P. 1167–1170. https://doi.org/10.1016/0021-8502(89)90788-X
  18. Bergmann K., Moore C.B. Energy dependence and isotope effect for the total reaction rate of Cl + HI and Cl + HBr // J. Chem. Phys. 1975. V. 63. № 2. P. 643–649. https://doi.org/10.1063/1.431385
  19. Chang T., Liu S.-H., Zhen F.-T. Atmospheric concentrations of the Cl atom, CIO radical, and HO radical in the coastal marine boundary layer // Env. Res. 2004. V. 94(1). P. 67–74. https://doi.org/10.1016/j.envres.2003.07.008
  20. Chatfield R.B., Crutzen P.J. Are there interactions of iodine and sulfur species in marine air photochemistry? // J. Geophys. Res., 1990. V. 95. P. 22319–22341.
  21. Cicerone R.J. Halogens in the atmosphere // Rev. Geophys. Space Phys. 1981. V. 19. № 1. P. 123–139.
  22. Finlayson-Pitts B.J. The Tropospheric Chemistry of Sea Salt: A Molecular-Level View of the Chemistry of NaCl and NaBr // Chem. Rev. 2003. V. 103(12). P. 4801–4822. https://doi.org/10.1021/cr020653t
  23. Huang R.J., Seitz K., Neary T., O’Dowd C.D., Platt U., Hoffmann T. Observations of high concentrations of I2 and IO in coastal air supporting iodine-oxide driven coastal new particle formation // Geophys. Res. Lett. 2010. V. 37. P. L03803. https://doi.org/0.1029/2009GL041467
  24. Khamaganov V.G., Orkin V.L., Larin I.K. Study of the Reactions of OH with HCl, HBr, and HI between 298 K and 460 K // Int. J. Chem. Kinet. 2020. V. 52. P. 852–860. https://doi.org/10.1002/kin.21404
  25. Martino M., Mills G.P., Woetjen J., Liss P.S. A new source of volatile organoiodine compounds in surface seawater // Geophys. Res. Lett., 2009. V. 36. № 1. L01609. https://doi.org/10.1029/2008GL036334
  26. McFiggans G. Marine aerosols and iodine emissions // Nature. 2005. V. 433. № 7026. E13. https://doi.org/10.1038/nature03372
  27. McFiggans G., Coe H., Burgess R., Allan J., Cubison M., Alfarra M.R., Saunders R., Sais-Lopez A., Plane J.M.C., Wevill D.J., Carpenter L.J., Rickard A.R., Monks P.S. Direct evidence for coastal iodine particles from Laminaria macroalgae – linkage to emissions of molecular iodine // Atmos. Chem. Phys. 2004. V.4. № 3. P. 701–713. https://doi.org/1680-7324/acp/2004-4-701
  28. Mei C.C., Moore C.B. Temperature dependence of the total reaction rates for Cl + HI and Cl + HBr // J. Chem. Phys. 1977. V. 67. № 9. P. 3936–3939. https://doi.org/10.1063/1.435409
  29. Nakano J., Enamy S., Nakamichi S., Aloisio S., Hashimoto S., Kawasaki M. Temperature and Pressure Dep endence Study of the Reaction of IO Radicals with Dimethyl Sulfide by Cavity Ring-Down Laser Spectroscopy // J. Phys. Chem. A. 2003. V. 107. № 33. P. 6381–6387. https://doi.org/10.1021/jp0345147
  30. O’Dowd C.D., Jimenez J.L., Bahreini R., Flagan R.C., Seinfeld J.H., Ha¨meri K., Pirjola L., Kulmala M., Jennings S.G., Hoffmann T. Marine aerosol formation from biogenic iodine emissions // Nature. 2002. V. 417. P. 632–636. https://doi.org/10.1038/nature00775
  31. Saiz-Lopez A., Plane J.M.C., McFiggans G., Williams P.I., Ball S.M., Jones R.L., Hongwei C., Hoffmann T. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation // Atmos. Chem. Phys. 2006. V. 6(4). P. 883–895. https://doi.org/10.5194/acp-6-883-2006
  32. Sayin H., McKee M.L. Computational Study of the Reactions between XO (X = Cl, Br, I) and Dimethyl Sulfide // J. Phys. Chem. A. 2004. V. 108. № 37. P. 7613–7620. https://doi.org/10.1021/jp0479116
  33. Singh H.B., Thakur A.N., Chen Y.E., Kanakidou M. Tetrachloroethylene as an indicator of low CI atom concentrations in the troposphere. // Geophys. Res. Lett. 1996. V. 23. № 12. P. 1529–1532. https://doi.org/10.1029/96GL01368
  34. Vaughan S., Ingham T., Whalley L.K., Stone D., Evans M.J., Read K.A., Lee J.D., Moller S.J., Carpenter L.J., Lewis A.C., Fleming Z.L., Heard D.E. Seasonal observations of OH and HO2 in the remote tropical marine boundary layer // Atmos. Chem. Phys. 2012. V. 12. P. 2149–2179. https://doi.org/10.5194/acp-12-2149-2012.
  35. Vogt R., Crutzen P., Sander R. A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer // Nature. 1996. V. 383. P. 327–330. https://doi.org/10.1038/383327a0
  36. Wodarczyk F.J., Moore C.B. Laser-initiated chemical reactions: total absolute reaction rate constants for Cl+ HBr and Cl + HI // Chem. Phys. Lett. 1974. V. 26. № 4. P. 484–488. https://doi.org/10.1016/0009-2614(74)80396-9
  37. Yuan J., Misra A., Goumri A., Shao D.D., Marshall P. Kinetic Studies of the Cl + HI Reaction Using Three Techniques // J. Phys. Chem. A. 2004. V. 108. № 33. P. 6857–6862.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Реактор.

Скачать (105KB)
3. Рис. 2. График зависимости ln(J0/J) от концентрации [HI]. (T = 298˚K, P = 1.1 Торр, время реакции 0.0083 с. Разбавителем служил гелий. Измерялся сигнал РФ атома хлора.)

Скачать (62KB)
4. Рис. 3. График зависимости ln(J0/J) от времени контакта реагентов. (T = 298˚K; P = 1.0 Торр, [HI] = 2.9 × 1011 молекула см–3. Разбавителем служил гелий. Измерялся сигнал РФ атома хлора.)

Скачать (52KB)
5. Рис. 4. Зависимость сигнала РФ атомов йода от концентрации HI. (T = 298˚K, P = 1.0 Торр; время реакции 0.0093 с. Разбавителем служил гелий.)

Скачать (61KB)
6. Рис. 5. Зависимость от концентрации HI при фиксированном времени взаимодействия реагентов (0.0073 с). (T = 298˚K; P = 1.1 Торр. Разбавителем служил гелий. Измерялся РФ сигнал атомов йода.)

Скачать (67KB)
7. Рис. 6. Зависимость от времени взаимодействия реагентов. (T = 298˚K; P = 1.1 Торр, [HI] = 1.3 × 1012 молекула см–3. Разбавителем служил гелий. Измерялся РФ сигнал атомов йода.)

Скачать (67KB)


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».