Layers over Minimal Logic
- Authors: Maksimova L.L.1,2, Yun V.F.1,2
-
Affiliations:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Issue: Vol 55, No 4 (2016)
- Pages: 295-305
- Section: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/233994
- DOI: https://doi.org/10.1007/s10469-016-9399-0
- ID: 233994
Cite item
Abstract
We introduce a classification of extensions of Johansson’s minimal logic J that extends the classification of superintuitionistic logics proposed by T. Hosoi. It is proved that the layer number of any finitely axiomatizable logic is effectively computable. Every layer over J has a least logic. It is stated that each layer has finitely many maximal logics, and minimal and maximal logics of all layers are recognizable over J.
Keywords
About the authors
L. L. Maksimova
Sobolev Institute of Mathematics; Novosibirsk State University
Author for correspondence.
Email: lmaksi@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
V. F. Yun
Sobolev Institute of Mathematics; Novosibirsk State University
Email: lmaksi@math.nsc.ru
Russian Federation, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
Supplementary files
