Degrees of Autostability for Prime Boolean Algebras
- Авторы: Bazhenov N.A.1,2, Marchuk M.I.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Выпуск: Том 57, № 2 (2018)
- Страницы: 98-114
- Раздел: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234078
- DOI: https://doi.org/10.1007/s10469-018-9483-8
- ID: 234078
Цитировать
Аннотация
We look at the concept of algorithmic complexity of isomorphisms between computable copies of Boolean algebras. Degrees of autostability are found for all prime Boolean algebras. It is shown that for any ordinals α and β with the condition 0 ≤ α ≤ β ≤ ω, there is a decidable model for which 0(α) is a degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability. It is proved that for any nonzero ordinal β ≤ ω, there is a decidable model for which there is no degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability.
Об авторах
N. Bazhenov
Sobolev Institute of Mathematics; Novosibirsk State University
Автор, ответственный за переписку.
Email: bazhenov@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
M. Marchuk
Sobolev Institute of Mathematics
Email: bazhenov@math.nsc.ru
Россия, pr. Akad. Koptyuga 4, Novosibirsk, 630090
Дополнительные файлы
