Some Absolute Properties of A-Computable Numberings
- Autores: Badaev S.A.1, Issakhov A.A.1,2
-
Afiliações:
- Al-Farabi Kazakh National University
- Kazkh-British Technical University
- Edição: Volume 57, Nº 4 (2018)
- Páginas: 275-288
- Seção: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234094
- DOI: https://doi.org/10.1007/s10469-018-9499-0
- ID: 234094
Citar
Resumo
For an arbitrary set A of natural numbers, we prove the following statements: every finite family of A-computable sets containing a least element under inclusion has an Acomputable universal numbering; every infinite A-computable family of total functions has (up to A-equivalence) either one A-computable Friedberg numbering or infinitely many such numberings; every A-computable family of total functions which contains a limit function has no A-computable universal numberings, even with respect to Areducibility.
Sobre autores
S. Badaev
Al-Farabi Kazakh National University
Autor responsável pela correspondência
Email: Serikzhan.Badaev@kaznu.kz
Cazaquistão, Al-Farabi Ave. 71, Alma-Ata, 050040
A. Issakhov
Al-Farabi Kazakh National University; Kazkh-British Technical University
Autor responsável pela correspondência
Email: asylissakhov@gmail.com
Cazaquistão, Al-Farabi Ave. 71, Alma-Ata, 050040; ul. Tole bi 59, Alma-Ata, 050000
Arquivos suplementares
