Positive Presentations of Families in Relation to Reducibility with Respect to Enumerability


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The objects considered here serve both as generalizations of numberings studied in [1] and as particular versions of A-numberings, where ???? is a suitable admissible set, introduced in [2] (in view of the existence of a transformation realizing the passage from e-degrees to admissible sets [3]). The key problem dealt with in the present paper is the existence of Friedberg (single-valued computable) and positive presentations of families. In [3], it was stated that the above-mentioned transformation preserves the majority of properties treated in descriptive set theory. However, it is not hard to show that it also respects the positive (negative, decidable, single-valued) presentations. Note that we will have to extend the concept of a numbering and, in the general case, consider partial maps rather than total ones. The given effect arises under the passage from a hereditarily finite superstructure to natural numbers, since a computable function (in the sense of a hereditarily finite superstructure) realizing an enumeration of the hereditarily finite superstructure for nontotal sets is necessarily a partial function.

Авторлар туралы

I. Kalimullin

Kazan (Volga Region) Federal University

Хат алмасуға жауапты Автор.
Email: Iskander.Kalimullin@kpfu.ru
Ресей, ul. Kremlevskaya 18, Kazan, 420008

V. Puzarenko

Sobolev Institute of Mathematics; Novosibirsk State University

Email: Iskander.Kalimullin@kpfu.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

M. Faizrakhmanov

Kazan (Volga Region) Federal University

Email: Iskander.Kalimullin@kpfu.ru
Ресей, ul. Kremlevskaya 18, Kazan, 420008

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018