Polynomially Complete Quasigroups of Prime Order
- Авторы: Galatentko A.V.1, Pankrat’ev A.E.1, Rodin S.B.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 57, № 5 (2018)
- Страницы: 327-335
- Раздел: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234100
- DOI: https://doi.org/10.1007/s10469-018-9505-6
- ID: 234100
Цитировать
Аннотация
We formulate a polynomial completeness criterion for quasigroups of prime order, and show that verification of polynomial completeness may require time polynomial in order. The results obtained are generalized to n-quasigroups for any n ≥ 3. In conclusion, simple corollaries are given on the share of polynomially complete quasigroups among all quasigroups, and on the cycle structure of row and column permutations in Cayley tables for quasigroups that are not polynomially complete.
Ключевые слова
Об авторах
A. Galatentko
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: agalat@msu.ru
Россия, Leninskie Gory 1, Moscow, 119991
A. Pankrat’ev
Lomonosov Moscow State University
Email: agalat@msu.ru
Россия, Leninskie Gory 1, Moscow, 119991
S. Rodin
Lomonosov Moscow State University
Email: agalat@msu.ru
Россия, Leninskie Gory 1, Moscow, 119991
Дополнительные файлы
