Combinatorics on Binary Words and Codimensions of Identities in Left Nilpotent Algebras


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Numerical characteristics of polynomial identities of left nilpotent algebras are examined. Previously, we came up with a construction which, given an infinite binary word, allowed us to build a two-step left nilpotent algebra with specified properties of the codimension sequence. However, the class of the infinite words used was confined to periodic words and Sturm words. Here the previously proposed approach is generalized to a considerably more general case. It is proved that for any algebra constructed given a binary word with subexponential function of combinatorial complexity, there exists a PI-exponent. And its precise value is computed.

Sobre autores

M. Zaicev

Lomonosov Moscow State University

Autor responsável pela correspondência
Email: zaicevmv@mail.ru
Rússia, Leninskie Gory 1, Moscow, 119991

D. Repovš

Univerza v Ljubljani

Email: zaicevmv@mail.ru
Eslovênia, Kongresni trg 12, Ljubljana, 1000

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, part of Springer Nature, 2019