Projections of Semisimple Lie Algebras
- Autores: Gein A.G.1
-
Afiliações:
- El’tsin Ural Federal University
- Edição: Volume 58, Nº 2 (2019)
- Páginas: 103-114
- Seção: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234124
- DOI: https://doi.org/10.1007/s10469-019-09529-z
- ID: 234124
Citar
Resumo
It is proved that the property of being a semisimple algebra is preserved under projections (lattice isomorphisms) for locally finite-dimensional Lie algebras over a perfect field of characteristic not equal to 2 and 3, except for the projection of a three-dimensional simple nonsplit algebra. Over fields with the same restrictions, we give a lattice characterization of a three-dimensional simple split Lie algebra and a direct product of a one-dimensional algebra and a three-dimensional simple nonsplit one.
Palavras-chave
Sobre autores
A. Gein
El’tsin Ural Federal University
Autor responsável pela correspondência
Email: a.g.geyn@urfu.ru
Rússia, ul. Mira 19, Yekaterinburg, 620002
Arquivos suplementares
