A Sufficient Condition for Nonpresentability of Structures in Hereditarily Finite Superstructures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce a class of existentially Steinitz structures containing, in particular, the fields of real and complex numbers. A general result is proved which implies that if \( \mathfrak{M} \) is an existentially Steinitz structure then the following structures cannot be embedded in any structure Σ-presentable with trivial equivalence over ℍ\( \mathbb{F} \)(\( \mathfrak{M} \)): the Boolean algebra of all subsets of ω, its factor modulo the ideal consisting of finite sets, the group of all permutations on ω, its factor modulo the subgroup of all finitary permutations, the semigroup of all mappings from ω to ω, the lattice of all open sets of real numbers, the lattice of all closed sets of real numbers, the group of all permutations of ℝ Σ-definable with parameters over ℍ\( \mathbb{F} \)(ℝ), and the semigroup of such mappings from ℝ to ℝ.

作者简介

A. Morozov

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: morozov@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016