Generating Triples of Involutions of Groups of Lie Type of Rank 2 Over Finite Fields
- Autores: Nuzhin Y.N.1
-
Afiliações:
- Siberian Federal University
- Edição: Volume 58, Nº 1 (2019)
- Páginas: 59-76
- Seção: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234120
- DOI: https://doi.org/10.1007/s10469-019-09525-3
- ID: 234120
Citar
Resumo
For finite simple groups U5(2n), n > 1, U4(q), and S4(q), where q is a power of a prime p > 2, q − 1 ≠= 0(mod4), and q ≠= 3, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals 1, is equal to 5.
Palavras-chave
Sobre autores
Ya. Nuzhin
Siberian Federal University
Autor responsável pela correspondência
Email: nuzhin2008@rambler.ru
Rússia, pr. Svobodnyi 79, Krasnoyarsk, 660041
Arquivos suplementares
