Generic Gӧdel’s Incompleteness Theorem


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [3], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).

Авторлар туралы

A. Rybalov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Omsk State Technical University

Хат алмасуға жауапты Автор.
Email: alexander.rybalov@gmail.com
Ресей, ul. Pevtsova 13, Omsk, 644099; pr. Mira 11, Omsk, 644050

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017