Generic Gӧdel’s Incompleteness Theorem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Gӧdel’s incompleteness theorem asserts that if formal arithmetic is consistent then there exists an arithmetic statement such that neither the statement nor its negation can be deduced from the axioms of formal arithmetic. Previously [3], it was proved that formal arithmetic remains incomplete if, instead of the set of all arithmetic statements, we consider any set of some class of “almost all” statements (the class of so-called strongly generic subsets). This result is strengthened as follows: formal arithmetic is incomplete for any generic subset of arithmetic statements (i.e., a subset of asymptotic density 1).

Sobre autores

A. Rybalov

Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences; Omsk State Technical University

Autor responsável pela correspondência
Email: alexander.rybalov@gmail.com
Rússia, ul. Pevtsova 13, Omsk, 644099; pr. Mira 11, Omsk, 644050

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017