Automorphism Groups of Small Distance-Regular Graphs
- Авторлар: Belousov I.N.1, Makhnev A.A.1
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
- Шығарылым: Том 56, № 4 (2017)
- Беттер: 261-268
- Бөлім: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234042
- DOI: https://doi.org/10.1007/s10469-017-9447-4
- ID: 234042
Дәйексөз келтіру
Аннотация
We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [1] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array {15, 12, 1; 1, 2, 15}, {35, 32, 1; 1, 2, 35}, {39, 36, 1; 1, 2, 39}, or {42, 39, 1; 1, 3, 42} (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.
Негізгі сөздер
Авторлар туралы
I. Belousov
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: i_belousov@mail.ru
Ресей, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Email: i_belousov@mail.ru
Ресей, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
Қосымша файлдар
