Automorphism Groups of Small Distance-Regular Graphs
- Autores: Belousov I.N.1, Makhnev A.A.1
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 56, Nº 4 (2017)
- Páginas: 261-268
- Seção: Article
- URL: https://journal-vniispk.ru/0002-5232/article/view/234042
- DOI: https://doi.org/10.1007/s10469-017-9447-4
- ID: 234042
Citar
Resumo
We consider undirected graphs without loops and multiple edges. Previously, V. P. Burichenko and A. A. Makhnev [1] found intersection arrays of distance-regular locally cyclic graphs with the number of vertices at most 1000. It is shown that the automorphism group of a graph with intersection array {15, 12, 1; 1, 2, 15}, {35, 32, 1; 1, 2, 35}, {39, 36, 1; 1, 2, 39}, or {42, 39, 1; 1, 3, 42} (such a graph enters the above-mentioned list) acts intransitively on the set of its vertices.
Palavras-chave
Sobre autores
I. Belousov
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: i_belousov@mail.ru
Rússia, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
A. Makhnev
Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Email: i_belousov@mail.ru
Rússia, ul. S. Kovalevskoi 16, Ekaterinburg, 620990
Arquivos suplementares
