Associators and Commutators in Alternative Algebras


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is proved that in a unital alternative algebra A of characteristic ≠ 2, the associator (a, b, c) and the Kleinfeld function f(a, b, c, d) never assume the value 1 for any elements a, b, c, dA. Moreover, if A is nonassociative, then no commutator [a, b] can be equal to 1. As a consequence, there do not exist algebraically closed alternative algebras. The restriction on the characteristic is essential, as exemplified by the Cayley–Dickson algebra over a field of characteristic 2.

作者简介

E. Kleinfeld

Aff1

Email: shestak@ime.usp.br
美国, Reno, NV, 89503-1719

I. Shestakov

Sobolev Institute of Mathematics; Universidade de São Paulo

编辑信件的主要联系方式.
Email: shestak@ime.usp.br
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; São Paulo-SEP, 05315-970

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019