Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 58, № 2 (2019)

Article

Projections of Semisimple Lie Algebras

Gein A.

Аннотация

It is proved that the property of being a semisimple algebra is preserved under projections (lattice isomorphisms) for locally finite-dimensional Lie algebras over a perfect field of characteristic not equal to 2 and 3, except for the projection of a three-dimensional simple nonsplit algebra. Over fields with the same restrictions, we give a lattice characterization of a three-dimensional simple split Lie algebra and a direct product of a one-dimensional algebra and a three-dimensional simple nonsplit one.

Algebra and Logic. 2019;58(2):103-114
pages 103-114 views

Generalized Wreath Products of m-Groups

Zenkov A., Isaeva O.

Аннотация

The concept of a generalized wreath product of permutation m-groups is introduced, and it is proved that an m-transitive permutation group embeds into a generalized wreath product of its primitive components.

Algebra and Logic. 2019;58(2):115-122
pages 115-122 views

Structure of Quasivariety Lattices. II. Undecidable Problems

Kravchenko A., Nurakunov A., Schwidefsky M.

Аннотация

Sufficient conditions are specified under which a quasivariety contains continuum many subquasivarieties having an independent quasi-equational basis but for which the quasiequational theory and the finite membership problem are undecidable. A number of applications are presented.

Algebra and Logic. 2019;58(2):123-136
pages 123-136 views

Maximality of the Countable Spectrum in Small Quite o-Minimal Theories

Kulpeshov B.

Аннотация

We give a criterion for the countable spectrum to be maximal in small binary quite o-minimal theories of finite convexity rank.

Algebra and Logic. 2019;58(2):137-143
pages 137-143 views

The Interpolation Problem in Finite-Layered Pre-Heyting Logics

Maksimova L., Yun V.

Аннотация

The interpolation problem over Johansson’s minimal logic J is considered. We introduce a series of Johansson algebras, which will be used to prove a number of necessary conditions for a J-logic to possess Craig’s interpolation property (CIP). As a consequence, we deduce that there exist only finitely many finite-layered pre-Heyting algebras with CIP.

Algebra and Logic. 2019;58(2):144-157
pages 144-157 views

Degree Spectra of Structures Relative to Equivalences

Semukhin P., Turetsky D., Fokina E.

Аннотация

A standard way to capture the inherent complexity of the isomorphism type of a countable structure is to consider the set of all Turing degrees relative to which the given structure has a computable isomorphic copy. This set is called the degree spectrum of a structure. Similarly, to characterize the complexity of models of a theory, one may examine the set of all degrees relative to which the theory has a computable model. Such a set of degrees is called the degree spectrum of a theory. We generalize these two notions to arbitrary equivalence relations. For a structure \( \mathcal{A} \) and an equivalence relation E, the degree spectrum DgSp(\( \mathcal{A} \), E) of \( \mathcal{A} \) relative to E is defined to be the set of all degrees capable of computing a structure \( \mathcal{B} \) that is E-equivalent to \( \mathcal{A} \). Then the standard degree spectrum of \( \mathcal{A} \) is DgSp(\( \mathcal{A} \), ≅) and the degree spectrum of the theory of \( \mathcal{A} \) is DgSp(\( \mathcal{A} \), ≡). We consider the relations \( {\equiv}_{\sum_n} \) (\( \mathcal{A}{\equiv}_{\sum_n}\mathcal{B} \) iff the Σn theories of \( \mathcal{A} \) and \( \mathcal{B} \) coincide) and study degree spectra with respect to \( {\equiv}_{\sum_n} \).

Algebra and Logic. 2019;58(2):158-172
pages 158-172 views

Finite Generalized Soluble Groups

Huang J., Hu B., Skiba A.

Аннотация

Let σ = {σi | i ∈ I} be a partition of the set of all primes ℙ and G a finite group. Suppose σ(G) = {σi | σi ∩ π(G) ≠ = ∅}. A set ℋ of subgroups of G is called a complete Hall σ-set of G if every nontrivial member of ℋ is a σi-subgroup of G for some iI and ℋ contains exactly one Hall σi-subgroup of G for every i such that σi ∈ σ(G). A group G is σ-full if G possesses a complete Hall σ-set. A complete Hall σ-set ℋ of G is called a σ-basis of G if every two subgroups A, B ∈ ℋ are permutable, i.e., AB = BA. In this paper, we study properties of finite groups having a σ-basis. It is proved that if G has a σ-basis, then G is generalized σ-soluble, i.e, |σ(H/K)| ≤ 2 for every chief factor H/K of G. Moreover, it is shown that every complete Hall σ-set of a σ-full group G forms a σ-basis of G iff G is generalized σ-soluble, and for the automorphism group G/CG(H/K) induced by G on any its chief factor H/K, we have |σ(G/CG(H/K))| ≤ 2 and also σ(H/K) ⊆ σ(G/CG(H/K)) in the case |σ(G/CG(H/K))| = 2.

Algebra and Logic. 2019;58(2):173-185
pages 173-185 views

Read-Once Functions of the Algebra of Logic in Pre-Elementary Bases

Sharankhaev I.

Аннотация

Functions of the algebra of logic that can be realized by read-once formulas over finite bases are studied. Necessary and sufficient conditions are derived under which functions of the algebra of logic are read-once in pre-elementary bases {−, ·,∨, 0, 1, x1 · . . . · xn\( {\overline{x}}_1 \)· . . . · \( {\overline{x}}_n \)} and {−, ·,∨, 0, 1, x1(x2x3 · . . . · xn) ∨ x2\( {x}_2{\overline{x}}_3 \) · . . . · \( {\overline{x}}_n \)} where n ≥ 4. This completes the description of classes of read-once functions of the algebra of logic in all pre-elementary bases.

Algebra and Logic. 2019;58(2):186-195
pages 186-195 views

Sessions of the Seminar “Algebra i Logika”

Algebra and Logic. 2019;58(2):196-198
pages 196-198 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».