Polarimetric monitoring of primitive asteroids near perihelion in order to detect their sublimation-dust activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

UBVR polarimetric observations of 12 main-belt mostly primitive asteroids located near perihelion heliocentric distances were carried out from December 2022 to April 2023 with Zeiss-2000 telescope at the Terskol Peak observatory. The purpose of the monitoring program wasto search for changes in the polarimetric parameters of the asteroids caused by possible sublimation-dust activity, as a result of which the formation of rarefied dust exospheres of asteroids is possible. The objects of the program were asteroids: (1) Ceres, (53) Kalypso, (117) Lomia, (164) Eva, (214) Ashera, (324) Bamberga, (419) Aurelia, (505) Cava, (554) Peraga, (654) Zelinda, (704) Interamnia, (1021) Flammario. Polarimetric observations of asteroids (117) Lomia, (164) Eva and (505) Kava were made for the first time, the remaining asteroids were observed earlier. Only for two asteroids (1) Ceres and (704) Interamnia, according to spectrophotometric observations, temporal spectrophotometric variability was noted earlier. Analysis of temporal changes in the degree of polarization of asteroids and comparison of the results of observations with the data available in the literature showed that the stability of the observed degree of polarization is comparable with measurement errors of ~(0.02–0.1)% for asteroids of different brightness. Thus, during the observation period, no noticeable polarization signs of temporary sublimation-dust activity of the observed asteroids were detected. Additionally, it is shown that the currently existing variants of the spectral taxonomy of asteroids, based on spectrophotometric data and albedo, demonstrate a significant scattering of the selected classes when compared with their polarimetric phase dependencies.The asteroid (554) Peraga has been confirmed to have a negative degree of polarization at angles less than the inversion angle. Measurements of the polarization of the asteroid (1) Ceres in a wide range of wavelengths did not confirm the previously suspected change in the angle of the polarization plane with the wavelength.

Full Text

Restricted Access

About the authors

V. V. Busarev

Lomonosov Moscow State University, Sternberg Astronomical Institute; Institute of Astronomy of the Russian Academy of Sciences

Author for correspondence.
Email: busarev@sai.msu.ru
Russian Federation, Moscow; Moscow

N. N. Kiselev

Institute of Astronomy of the Russian Academy of Sciences

Email: busarev@sai.msu.ru
Russian Federation, Moscow

M. P. Shcherbina

Institute of Astronomy of the Russian Academy of Sciences; Lomonosov Moscow State University, Sternberg Astronomical Institute

Email: busarev@sai.msu.ru
Russian Federation, Moscow; Moscow

N. V. Karpov

Institute of Astronomy of the Russian Academy of Sciences

Email: busarev@sai.msu.ru
Russian Federation, Moscow

A. P. Gorshkov

Institute of Astronomy of the Russian Academy of Sciences

Email: busarev@sai.msu.ru
Russian Federation, Moscow

References

  1. V.V. Busarev, S.I. Barabanov, V.S. Rusakov, V.B. Puzin, and V.V. Kravtsov, Icarus 262, 44 (2015).
  2. V.V. Busarev, A.B. Makalkin, F. Vilas, S.I. Barabanov, and M.P. Scherbina, Icarus 304, 83 (2018).
  3. V.V. Busarev, E.V. Petrova, M.P. Shcherbina, S.Y. Kuznetsov, M.A. Burlak, N.P. Ikonnikova, A.A. Savelova, and A.A. Belinskii, Solar System Res. 57, 439 (2023).
  4. V.V. Busarev, E.V. Petrova, T.R. Irsmambetova, M.P. Shcherbina, and S.I. Barabanov, Icarus 369, id. 114634 (2021).
  5. E. Petrova and V. Busarev, Solar System Res. 57(2), 161 (2023).
  6. C.R. Chapman, D. Morrison, and B. Zellner, Icarus 25, 104 (1975).
  7. A. Dollfus, M. Wolff, J. Geake, D. Lupishko, and L. Dougherty, in Asteroids II. Proc.of the Conference, Tucson, AZ, Mar. 8–11, 1988 (A90-27001 10-91) (Tucson, AZ: University of Arizona Press, 1989), p. 594.
  8. I. Belskaya, A. Cellino, R. Gil-Hutton, K. Muinonen, Y. Shkuratov, in Asteroids IV, edited by P. Michel, F.E. DeMeo, and W. F. Bottke (Tucson: University of Arizona Press, 2015), p.151.
  9. E.V. Petrova. Solar System Research 58, 196 (2024).
  10. K. Serkowski, in Planets, Stars, and Nebulae: Studied with Photopolarimetry, Proc. of IAU Colloq. 23, held in Tucson, AZ, November, 1972; edited by T. Gehrels (Tucson, AZ: University of Arizona Press, 1974), p.135.
  11. J.-C. Hsu and M. Breger, 262, 732 (1982).
  12. G. D. Schmidt, R. Elston, and O. L. Lupie, Astron. J. 104(4), 1563 (1992).
  13. N. Kiselev, V. Rosenbush, K. Muinonen, L. Kolokolova, A. Savushkin, and N. Karpov, Planetary Sci. J. 3(6), id. 134 (2022).
  14. G. Chernova, D. Lupishko, and V. Shevchenko, Kinematika Fiz. Nebesn. Tel. 10(2), 45 (1994).
  15. K. Lumme and K. Muinonen, Abstracts for the IAU Symp. 160 Asteroids, Comets, Meteors 1993, held June 14–18, 1993, in Belgirate, Italy (Houston: Lunar and Planetary Institute, 1993), p.194.
  16. D. Lupishko, NASA Planetary Data System, p. 1 (2019), https://sbn.psi.edu/pds/resource/doi/apd_1.0.html .
  17. D. Tholen, in Asteroids II. Proc. of the Conference, held in Tucson, AZ, Mar. 8–11, 1988 (A90-27001 10-91), edited by R. P. Binzel, T. Gehrels, and M. S. Matthews (Tucson, AZ: University of Arizona Press, 1989), p. 1139.
  18. D.J. Tholen, Asteroid taxonomy from cluster analysis of photometry, PhD thesis, University of Arizona (1984), 150 p.
  19. S.J. Bus and R.P. Binzel, Icarus 158(1), 146 (2002).
  20. M. Mahlke, B. Carry, and P.-A. Mattei, Astron. and Astrophys. 665, id. A26 (2022).
  21. M.F. A’Hearn and P.D. Feldman, Icarus 98(1), 54 (1992).
  22. Д. Лупишко, Фотометрия и поляриметрия астероидов: результаты наблюдений и анализ данных, Дисс. докт. физ.-мат. наук, Харьков, гос.университет (1998), 259 с.
  23. B. Zellner and J. Gradie, Astron. J. 81, 262 (1976).
  24. A. Cellino, S. Bagnulo, R. Gil-Hutton, P. Tanga, M. Cañada-Assandri, and E. Tedesco, Monthly Not. Roy. Astron. Soc. 451, 3473 (2015).
  25. A. Penttilä, K. Lumme, E. Hadamcik, and A.-C. Levasseur-Regourd, Astron. and Astrophys. 432, 1081 (2005).
  26. R. Gil-Hutton, V. Mesa, A. Cellino, P. Bendjoya, L. Penaloza, and F. Lovos, Astron. and Astrophys. 482, 309 (2008).
  27. K. Antonyuk and N. Kiselev, Solar System Res. 46, 54 (2012).
  28. R. Gil-Hutton and M. Cañada-Assandri, Astron. and Astrophys. 539, id. A115 (2012).
  29. R. Gil-Hutton and E. Garca-Migani, Astron. and Astrophys. 607, id. A103 (2017).
  30. V. Busarev, S. Barabanov, and V. Puzin, Solar System Res. 50, 281 (2016).
  31. V. Busarev, L. Golubeva, E. Petrova, and D. Shestopalov, in The Eleventh Moscow Solar System Symposium (11M-S3), held in Moscow 5—9 October 2020 (Moscow: Space Research Institute of the Russian Academy of Sciences Press, 2020), Book of Abstracts 11MS3-SB-09, p. 275.
  32. J.P. Laboratory, Small-Body Database Lookup Tool, https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html#/?sstr=1
  33. N. Schorghofer, E. Mazarico, T. Platz, F. Preusker, S.E. Schröder, C.A. Raymond, and C.T. Russell, Geophys. Res. Letters 43, 6783 (2016).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phase dependences of the degree of polarization of asteroids (1) Ceres, (704) Interamnia, (324) Bamberg, (1021) Flammario, (214) Asher, (419) Aurelius, (554) Peraga in bands B (open squares), V (open diamonds) and R (open triangles) together with data from different authors (open circles, closed circles, closed diamonds) from the APDB catalog [16].

Download (148KB)
3. Fig. 1 (continued).

Download (149KB)
4. Fig. 1 (end).

Download (43KB)
5. Fig. 2. Polarization phase curves of the studied asteroids in the B and R bands for taxonomic classes C, Ch and P according to [20]. The numbers on the graphs correspond to the asteroid numbers.

Download (113KB)
6. Fig. 3. Spectral dependence of the position angle of the plane of polarization θr (circles) and the degree of polarization qr (diamonds) of the asteroid (1) Ceres on February 24, 2023. The straight line corresponds to the average value of the angle θr = 89.1° ± 0.7°.

Download (44KB)

Copyright (c) 2024 The Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».