ON THE STABILITY OF A LAYERED INHOMOGENEOUS ELLIPTICAL GALAXY AS DYNAMIC SYSTEM

Cover Page

Cite item

Full Text

Abstract

In this paper, we consider several new models of a layered inhomogeneous elliptical galaxy (EG) having the shape either a triaxial ellipsoid or an oblate or prolate spheroid and consisting of baryonic mass (BM) and dark matter (DM) with different laws of density distribution — profiles. Based on these models, some key dynamic parameters of the EG were determined: gravitational (potential) energy and rotational kinetic energy, angular momentum distribution and specific angular momentum depending on density profiles. The equilibrium and stability (instability) of the EG as a dynamic system have been established according to known criteria. Critical values found parameters of the family of spheroids that determine the boundaries of stability (or instability) dynamic system based on the values of specific angular momentum depending on the density profiles. The results obtained were applied to sixty model EGs with parameters exactly matching those that actually exist and are presented in the form of tables and figures.

About the authors

S. A Gasanov

Lomonosov Moscow State University; Sternberg Astronomical Institute

Email: gasanov@sai.msu.ru
Moscow, Russia

References

  1. С.А. Гасанов, Астрон. журн. 98(9), 707 (2021).
  2. С.А. Гасанов, Астрон. журн. 99(2), 91 (2022).
  3. С.А. Гасанов, Астрон. журн. 101(2), 77 (2024).
  4. G. de Vaucouleurs, A. de Vaucouleurs, H.G. Corwin, R.J. Buta, G. Paturel, P. Fouqué, Third Reference Catalouge of Bright Galaxies (N.Y.: Springer-Verlag, Vol. 2, 3, 1991).
  5. Б.П. Кондратьев, Теория потенциала. Новые методы и задачи с решениями (М.: Мир, 2007).
  6. E. Hubble, Astrophys. J. 71, 231 (1930).
  7. J.F. Navarro, C.S. Frenk, and S.D.M. White, Monthly Not. Roy. Astron. Soc. 275(3), 720 (1995).
  8. L. Hernquist, Astrophys. J. 356, 359 (1990).
  9. J.P. Ostriker and P.J.E. Peebles, Astrophys. J. 186, 467 (1973).
  10. В.Л. Поляченко, А.М. Фридман, Равновесие и устойчивость гравитирующих систем (М.: Наука, 1976).
  11. P.O. Vandervoort, Astrophys. J. 273, 511 (1983).
  12. Б.П. Кондратьев, Теория потенциала и фигуры равновесия (Москва—Ижевск: РХД, 2003).
  13. A.J. Kalnajs, Astrophys. J. 212, 637 (1977).
  14. J. Binney and S. Tremaine, Galactic Dynamics (Princeton University Press, Series in Astrophysics, 2008).
  15. E.V. Polyachenko, Monthly Not. Roy. Astron. Soc. 357(2), 559 (2005).
  16. E.V. Polyachenko, V.L. Polyachenko and I.G. Shukhman, Monthly Not. Roy. Astron. Soc. 379(2), 573 (2007).
  17. S. Rozier, J.-B. Fouvry, P.G. Breen, A.L. Varri, C. Pichon, and D.C. Heggie, Monthly Not. Roy. Astron. Soc. 487(1), 711 (2019).
  18. E.V. Polyachenko and I.G. Shukhman, Monthly Not. Roy. Astron. Soc. 451(1), 601 (2015).
  19. Б.П. Кондратьев, Потенциалы и динамические модели эллипсоидальных гравитирующих систем, Кандидатская диссертация (М., 1982), 300 с.
  20. H. Poincaré, Leçons sur les hypothèses cosmogoniques (Paris : Libraire Scientifique A. Hermann et fils, 1911).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).