SEARCHING FOR BIOMARKERS WITH SPEKTR-UF OBSERVATORY: NITRIC OXIDE MOLECULE IN ATMOSPHERES OF EXOPLANETS NEAR THE ACTIVE HOST STARS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Detection of an N2–O2 atmosphere on an Earth-like exoplanet may be one of the defining pieces of evidence for the presence of biological and geological activity on it. The nitric oxide molecule, in turn, is an indicator of such an atmosphere, and its spectral bands in the near UV range (γ-bands, 203–248 nm) can be potentially detected using the long-slit spectrograph (LSS) (resolution 𝑅 = 1000) of the planned launch of the Spektr-UF space telescope. Strong electron precipitations into the atmospheres of exoplanets that are in the potentially habitable zone near the active host stars can lead to an increase in the concentration of NO and, accordingly, increase the chances of detecting this biomarker. Based on the calculations using models of electron precipitation into the upper atmosphere of the planet, odd nitrogen chemistry, radiative transfer, and the Spektr-UF exposure time calculator, we determined the necessary observational conditions for detecting the NO biomarker. Thus, in a reasonable observational time (⩽ 200 hours) with a signal-to-noise ratio of 3, using the Spektr-UF, it is possible to detect γ-bands of NO in the atmospheres of typical super-Earths and sub-Neptunes that are subjects of string electron precipitation — at distances of up to 8 and 30 parsecs, respectively. The best observational targets for NO detection are exoplanets in the potential habitable zone near host stars with G-K spectral types.

About the authors

G. N. Tsurikov

Institute of Astronomy of the RAS

Email: grishatsurikov9826@yandex.ru
Moscow, Russia

D. V. Bisikalo

Institute of Astronomy of the RAS; National Center for Physics and Mathematics

Moscow, Russia; Sarov, Russia

V. I. Shematovich

Institute of Astronomy of the RAS

Moscow, Russia

A. G. Zhilkin

Institute of Astronomy of the RAS

Moscow, Russia

References

  1. V.S. Meadows and R.K. Barnes Handbook of Exoplanets (H.J. Deeg and J.A. Belmonte, Eds., 57, 2018).
  2. J.F. Kasting, D.P. Whitmire, and R.T. Reynolds, Icarus 101, 1, 108–128 (1993).
  3. I.S. Shklovskii Vselennaia, zhizn’, razum. (1962).
  4. I.S. Shklovskii and C. Sagan Intelligent life in the universe (1966).
  5. L. Sproß, M. Scherf, V.I. Shematovich, D.V. Bisikalo, and H. Lammer, Astronomy Reports 65, 4, 275–296 (2021).
  6. H. Lammer, L. Sproß, J.L. Grenfell, M. Scherf, et al., Astrobiology 19, 7, 927–950 (2019).
  7. A. Coustenis and F.W. Taylor Titan: Exploring an Earthlike World (Second Edition, vol. 4, 2008).
  8. S.D. Domagal-Goldman, A. Segura, M.W. Claire, T.D. Robinson, and V.S. Meadows, Astrophys. J. 792, 2, 90 (2014).
  9. Y. Bétrémieux and L. Kaltenegger, Astrophys. J. Lett. 772, 2, L31 (2013).
  10. J.L. Grenfell, J.-M. Grießmeier, P. von Paris, A.B.C. Patzer, et al., Astrobiology 12, 12, 1109–1122 (2012).
  11. H. Rauer, S. Gebauer, P.V. Paris, J. Cabrera, et al., Astron. and Astrophys. 529, A8 (2011).
  12. E.W. Schwieterman, S.L. Olson, D. Pidhorodetska, C.T. Reinhard, et al., Astrophys. J. 937, 2, 109 (2022).
  13. A. Misra, V. Meadows, M. Claire, and D. Crisp, Astrobiology 14, 2, 67–86 (2014).
  14. V.S. Airapetian, C.H. Jackman, M. Mlynczak, W. Danchi, and L. Hunt, Scientific Reports 7, 14141 (2017).
  15. P. Barth, E.E. Stüeken, C. Helling, E.W. Schwieterman, and J. Telling, Astron. and Astrophys. 686, A58 (2024).
  16. G.N. Tsurikov and D.V. Bisikalo, Astronomy Reports 67, 2, 125–143 (2023).
  17. G.N. Tsurikov and D.V. Bisikalo, Astronomy Reports 67, 11, 1123–1138 (2023).
  18. V. Shematovich, D. Bisikalo, and G. Tsurikov, Atmosphere 14, 7, 1092 (2023).
  19. V. Shematovich, D. Bisikalo, G. Tsurikov, and A. Zhilkin, Astronomy Reports 68, 8, 843–864 (2024).
  20. A.A. Boyarchuk, B.M. Shustov, I.S. Savanov, M.E. Sachkov, et al., Astronomy Reports 60, 1, 1–42 (2016).
  21. B.M. Shustov, M.E. Sachkov, S.G. Sichevsky, R.N. Arkhangelsky, et al., Solar System Research 55, 7, 677–687 (2021).
  22. M. Sachkov, A.I. Gómez de Castro, B. Shustov, S. Sichevsky, and A. Shugarov, SPIE 12181, 121812S (2022).
  23. C.P. Johnstone, M. Güdel, H. Lammer, and K.G. Kislyakova, Astron. and Astrophys. 617, A107 (2018).
  24. A. Nakayama, M. Ikoma, and N. Terada, Astrophys. J. 937, 2, 72 (2022).
  25. C.P. Johnstone, M.L. Khodachenko, T. Lüftinger, K.G. Kislyakova, et al., Astron. and Astrophys. 624, L10 (2019).
  26. C.A. Barth, D.N. Baker, K.D. Mankoff, and S.M. Bailey, Geophysical Research Letters 28, 8, 1463–1466 (2001).
  27. C.A. Barth, K.D. Mankoff, S.M. Bailey, and S.C. Solomon, Journal of Geophysical Research (Space Physics) 108, A1, 1027 (2003).
  28. C.A. Barth, S.M. Bailey, and S.C. Solomon, Geophysical Research Letters 26, 9, 1251–1254 (1999).
  29. J.C. Gerard and C.A. Barth, Journal of Geophysical Research 82, 4, 674 (1977).
  30. V.I. Shematovich, D.V. Bisikalo, and J.C. Gerard, Annales Geophysicae 10, 10, 792–801 (1992).
  31. V.I. Shematovich, D.V. Bisikalo, and J.C. Gerard, Geophysical Research Letters 18, 9, 1691–1694 (1991).
  32. J.C. Gérard, V.I. Shematovich, and D.V. Bisikalo, Geophysical Research Letters 18, 9, 1695–1698 (1991).
  33. J.C. Gérard, V.I. Shematovich, and D.V. Bisikalo, Geophysical Monograph Series 87, 235–241 (1995).
  34. J.C. Gérard, D.V. Bisikalo, V.I. Shematovich, and J.W. Duff, Journal of Geophysical Research 102, A1, 285–294 (1997).
  35. C.A. Barth, Planetary and Space Science 40, 2–3, 315–336 (1992).
  36. D. Bisikalo, V. Shematovich, and B. Hubert, Universe 8, 8, 437 (2022).
  37. M.Y. Marov, V.I. Shematovich, and D.V. Bisicalo, Space Science Reviews 76, 1–2, 1–204 (1996).
  38. S.C. Solomon, Journal of Geophysical Research 106, A1, 107–116 (2001).
  39. S.C. Solomon, Journal of Geophysical Research (Space Physics) 122, 7, 7834–7848 (2017).
  40. V.I. Shematovich, D.V. Bisikalo, J.C. Gérard, C. Cox, et al., Journal of Geophysical Research (Planets) 113, E2, E02011 (2008).
  41. V.I. Shematovich, Russian Chemical Reviews 88, 10, 1013–1045 (2019).
  42. P.C. Cosby, Journal of Chemical Physics 98, 12, 9544–9553 (1993).
  43. C.W. Walter, P.C. Cosby, and H. Helm, Journal of Chemical Physics 99, 5, 3553–3561 (1993).
  44. A.E. Hedin, Journal of Geophysical Research 96, A2, 1159–1172 (1991).
  45. D. Bilitza, D. Altadill, V. Truhlik, V. Shubin, et al., Space Weather 15, 2, 418–429 (2017).
  46. S.M. Bailey, C.A. Barth, and S.C. Solomon, Journal of Geophysical Research (Space Physics) 107, A8, 1205 (2002).
  47. F. Wunderlich, M. Godolt, J.L. Grenfell, S. Städt, et al., Astron. and Astrophys. 624, A49 (2019).
  48. F. Schreier, S. Gimeno Garcá, P. Hochstaffl, and S. Städt, Atmosphere 10, 5, 262 (2019).
  49. F. Schreier, S. Gimeno Garcá, P. Hedelt, M. Hess, et al., Journal of Quantitative Spectroscopy and Radiative Transfer 137, 29–50 (2014).
  50. F. Schreier, S. Städt, P. Hedelt, and M. Godolt, Molecular Astrophysics 11, 1–22, (2018).
  51. U.S. standard atmosphere (1976).
  52. G.N. Tsurikov, S.G. Sichevsky, V.E. Shmagin, I.N. Nikonorov, and B.M. Shustov, Nauchnye trudy Instituta astronomii RAN 9, 1, 12–31 (2024).
  53. A. Shugarov and M. Sachkov, Photonics 10, 9, 1032 (2023).
  54. R. Diaz, Space Telescope Science Institute, Tech. Rep. CDBS-CRDS 2015-001, April (2015).
  55. S. Medallon, E. Rickman, and J. Brown, STIS Instrument Handbook for Cycle 32 v. 23 (vol. 23, 23, 2023).
  56. B.F. Gordietz, Y.N. Kulikov, M.N. Marov, and M.Ya. Marov, Trudi FIAN 130, 1, 3–28 (1982).
  57. R.G. Roble, Geophysical Monograph Series 87, 1–21 (1995).
  58. M.N. Izakov, Space Science Reviews 7, 5–6, 579–641 (1967).
  59. P.M. Banks and G. Kockarts, Aeronomy (1973).
  60. S.J. Bauer and H. Lammer, Planetary aeronomy: atmosphere environments in planetary systems (2004).
  61. R. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (2009).
  62. V. Singh and J.C. Gerard, Planetary and Space Science 30, 11, 1083–1089 (1982).
  63. D.E. Siskind, C.A. Barth, D.S. Evans, and R.G. Roble, Journal of Geophysical Research 94, A12, 16899–16911 (1989).
  64. J. Oberheide, M.G. Mlynczak, C.N. Mosso, B.M. Schroeder, et al., Journal of Geophysical Research (Space Physics) 118, 11, 7283–7293 (2013).
  65. J.A. Dodd, R.B. Lockwood, E.S. Hwang, et al., Journal of Chemical Physics 111, 8, 3498–3507 (1999).
  66. G.E. Caledonia and J.P. Kennealy, Planetary and Space Science 30, 10, 1043–1056 (1982).
  67. G.P. Anderson, AFGL atmospheric constituent profiles (0–120 km) (1986).
  68. M.L. Hill, K. Bott, P.A. Dalba, T. Fetherolf, et al., Astron. J. 165, 2, 34 (2023).
  69. R. Barnes, R. Luger, R. Deitrick, P. Driscoll, et al., Publ. Astron. Soc. Pacif. 132, 1008, 024502 (2020).
  70. R.O.P. Loyd, E.L. Shkolnik, A.C. Schneider, T. Richey-Yowell, et al., Astrophys. J. 890, 1, 23 (2020).
  71. A. Segura, K. Krelove, J.F. Kasting, D. Sommerlatt, et al., Astrobiology 3, 4, 689–708 (2003).
  72. A. Segura, J.F. Kasting, V. Meadows, M. Cohen, et al., Astrobiology 5, 6, 706–725 (2005).
  73. A.J. Pickles, Publications of the Astronomical Society of the Pacific 110, 749, 863–878 (1998).
  74. Z. Sviderskiene, Vilnius Astronomijos Observatorijos Biuletenis 80, 3 (1988).
  75. C.C. Wu, T.B. Ake, A. Boggess, R.C. Bohlin, et al., NASA IUE Newsl 22 (1983).
  76. H. Chakraborty, M. Lendl, B. Akinsanmi, et al., Astron. and Astrophys. 685, A173 (2024).
  77. F.V. Lovos, R.F. Dáz, and L.A. Nieto, Astron. and Astrophys. 665, A157 (2022).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 The Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).