Classification by compression: Application of information-theory methods for the identification of themes of scientific texts


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for automatic classification of scientific texts based on data compression is proposed. The method is implemented and investigated based on the data from an archive of scientific texts (arXiv.org) and in the CyberLeninka scientific electronic library (CyberLeninka.ru). Experiments showed that the method correctly identified the themes of scientific texts with a probability of 75–95%; its accuracy depends on the quality of the original data.

Sobre autores

I. Selivanova

The State Public Scientific Technological Library, Siberian Branch

Autor responsável pela correspondência
Email: selivanova@ict.sbras.ru
Rússia, Novosibirsk, 123298

B. Ryabko

Novosibirsk State University; Institute of Computational Technologies, Siberian Branch

Email: selivanova@ict.sbras.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

A. Guskov

Novosibirsk State University; Institute of Computational Technologies, Siberian Branch

Email: selivanova@ict.sbras.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2017