Minimax Rate of Testing in Sparse Linear Regression


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the problem of testing the hypothesis that the parameter of linear regression model is 0 against an s-sparse alternative separated from 0 in the l2-distance. We show that, in Gaussian linear regression model with p < n, where p is the dimension of the parameter and n is the sample size, the non-asymptotic minimax rate of testing has the form \(\sqrt {\left( {s/n} \right)\log \left( {\sqrt p /s} \right)}\). We also show that this is the minimax rate of estimation of the l2-norm of the regression parameter.

About the authors

A. Carpentier

University of Magdeburg

Author for correspondence.
Email: alexandra.carpentier@ovgu.de
Germany, Magdeburg

O. Collier

Modal’X, Université Paris-Nanterre è CREST

Email: alexandra.carpentier@ovgu.de
France, Paris

L. Comminges

CEREMADE, Université Paris-Dauphine è CREST

Email: alexandra.carpentier@ovgu.de
France, Paris

A. B. Tsybakov

CREST, ENSAE

Email: alexandra.carpentier@ovgu.de
France, Paris

Yu. Wang

LIDS-IDSS, MIT

Email: alexandra.carpentier@ovgu.de
United States, Cambridge, MA

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Pleiades Publishing, Inc.