Visual Servoing for Deformable Objects with Pre-Planned Trajectory-Guided Geometric Primitives
- Authors: Derrar Y.1, Saidi F.1, Malti A.1
-
Affiliations:
- Issue: No 2 (2025)
- Pages: 86-123
- Section: Control in technical systems
- URL: https://journal-vniispk.ru/0005-2310/article/view/284912
- DOI: https://doi.org/10.31857/S0005231025020058
- EDN: https://elibrary.ru/IQPGLO
- ID: 284912
Cite item
Abstract
About the authors
Ya. Derrar
Email: derrar.yasser@gmail.com
F. Saidi
Email: saidifarah.mimouni@gmail.com
A. Malti
Email: abed.malti@gmail.com
References
- Petit A., Lippiello V., Fontanelli G.A., Siciliano B. Tracking elastic deformable objects with an RGB-d sensor for a pizza chef robot // Robotics and Autonomous Systems. 2017. V. 88. P. 187–201. https://doi.org/10.1016/j.robot.2016.08.023. Accessed 2021-06-17.
- Haouchine N., Dequidt J., Peterlik I., Kerrien E., Berger M.-O., Cotin S. Imageguided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery // 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), P. 199–208. https://doi.org/10.1109/ISMAR.2013.6671780
- Rastegarpanah A., Aflakian A., Stolkin R. Optimized hybrid decoupled visual servoing with supervised learning / Proceedings of the Institution of Mechanical Engineers, Part I // J. Syst. Control Engin. 2022. V. 236(2). P. 338–354. https://doi.org/10.1177/09596518211028379. Publisher: IMECHE. Accessed 2021-07-21.
- Chi C., Berenson D. Occlusion-robust deformable object tracking without physics simulation // 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019. P. 6443–6450. https://arxiv.org/abs/2101.007332101.00733.
- https://doi.org/10.1109/IROS40897.2019.8967827. Accessed 2021-06-29. 5. Lagneau R. Shape Control of Deformable Objects by Adaptive Visual Servoing // INSA de Rennes, 2020. https://tel.archives-ouvertes.fr/tel-03087518 Accessed 2021-06-17.
- Lagneau R., Krupa A., Marchal M. Active Deformation through Visual Servoing of Soft Objects // 2020 IEEE International Conference on Robotics and Automation (ICRA), P. 8978–8984 (2020). https://doi.org/10.1109/ICRA40945.2020.9197506. ISSN: 2577-087X
- Chaumette F. Ikeuchi K. (ed.) Visual Servoing. Springer. Boston. 2014. P. 869–874.
- Tahri O., Chaumette F. Image moments: generic descriptors for decoupled imagebased visual servo // IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004. V. 2. P. 1185–11902. https://doi.org/10.1109/ROBOT.2004.1307985 ISSN: 1050-4729
- Agravante D.J., Claudio G., Spindler F., Chaumette F. Visual servoing in an optimization framework for the whole-body control of humanoid robots // IEEE Robotics and Automation Letters. V. 2. No. 2. P. 608–615. https://doi.org/10.1109/LRA.2016.2645512
- Ren X., Li H., Li Y. Image-based visual servoing control of robot manipulators using hybrid algorithm with feature constraints // IEEE Access 8. 2020. P. 223495–223508. https://doi.org/10.1109/ACCESS.2020.3042207
- Wang T., Wang W., Wei F. An overview of control strategy and trajectory planning of visual servoing / Fei, M., Li, K., Yang, Z., Niu, Q., Li, X. (eds.) Recent Featured Applications of Artificial Intelligence Methods // LSMS 2020 and ICSEE 2020 Workshops. P. 358–370. Springer, Singapore 2020
- Corke P., Hutchinson S. A new partitioned approach to image-based visual servo control // IEEE Transactions on Robotics and Automation. V. 17. No. 4. P. 507–515. https://doi.org/10.1109/70.954764
- Nicholas R. Gans, Seth A. Performance Tests for Visual Servo Control Systems, with Application to Partitioned Approaches to Visual Servo Control Hutchinson, Peter I. Corke // Int. J. Robot. Res. 2003. https://journals.sagepub.com/doi/abs/10.1177/027836490302210011 Accessed 2021-03-07
- Janabi-Sharifi F., Wilson W.J. Automatic selection of image features for visual servoing // IEEE Transactions on Robotics and Automation. 1997. V. 13. No. 6. P. 890–903. https://doi.org/10.1109/70.650168
- Chaumette F. Image moments: a general and useful set of features for visual servoing // IEEE Transactions on Robotics. 2024. V. 20. No. 4. P. 713–723. https://doi.org/10.1109/TRO.2004.829463
- Molnar C., Nagy T.D., Elek R.N., Haidegger T. Visual servoing-based camera control for the da vinci surgical system // 2020 IEEE 18th International Symposium on Intelligent Systems and Informatics (SISY). 2020. P. 107–112. https://doi.org/10.1109/SISY50555.2020.9217086
- Mohamed I. MPPI-VS: Sampling-Based Model Predictive Control Strategy for Constrained Image-Based and Position-Based Visual Servoing // IEEE/RSJ International Conference on Intelligent Robots and Systems. 2021. https://doi.org/10.48550/arXiv.2104.04925
- Lagneau R., Krupa A., Marchal M. Active deformation through visual servoing of soft objects // 2020 IEEE International Conference on Robotics and Automation (ICRA). 2020. P. 8978–8984. https://doi.org/10.1109/ICRA40945.2020.9197506
- Hu Z., Han T., Sun P., Pan J., Manocha D. 3-d deformable object manipulation using deep neural networks // IEEE Robotics and Automation Letters. 2019. V. 4. No. 4. P. 4255–4261. https://doi.org/10.1109/LRA.2019.2930476
- Jia B., Hu Z., Pan J., Manocha D. Manipulating highly deformable materials using a visual feedback dictionary // 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018. P. 239–246. https://doi.org/10.1109/ICRA.2018.8461264
- Hu Z., Sun P., Pan J. Three-dimensional deformable object manipulation using fast online gaussian process regression // IEEE Robotics and Automation Letters. 2018. V. 3. No. 2. P. 979–986. https://doi.org/10.1109/LRA.2018.2793339
- Zhu J. Vision-based robotic manipulation of deformable linear objects. PhD thesis, Universit´e Montpellier. 2020.
- Chen Z., Li S., Zhang N., Hao Y., Zhang X. Eye-to-hand robotic visual tracking based on template matching on fpgas // IEEE Access. 2019. V. 7. P. 88870–88880. https://doi.org/10.1109/ACCESS.2019.2926807
- Staneva V., Younes L. Modeling and estimation of shape deformation for topologypreserving object tracking // SIAM J. Imag. Sci.. 2014. V. 7. No. 1. P. 427–455. https://doi.org/10.1137/130919714
- Hu Y., Carter T.J., Ahmed H.U., Emberton M., Allen C., Hawkes D.J., Barratt D.C. Modelling prostate motion for data fusion during image-guided interventions // IEEE Transactions on Medical Imaging. V. 30. No. 11. P. 1887–1900. https://doi.org/10.1109/TMI.2011.2158235
- Chen Q., Sun Q.-S., Heng P.A., Xia D.-S. Two-stage object tracking method based on kernel and active contour // IEEE Transactions on Circuits and Systems for Video Technology. 2020. V. 20. No. 4. P. 605–609. https://doi.org/10.1109/TCSVT.2010.2041819
- Cao X., Lan J., Rong Li X. Extension-deformation approach to extended object tracking // 2016 19th International Conference on Information Fusion. (FUSION). 2016. P. 1185–1192.
- Joo H., Simon T., Sheikh Y. Total capture: A 3d deformation model for tracking faces, hands, and bodies // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018.
- Royer L., Marchal M., Le Bras A., Dardenne G., Krupa A. Real-time tracking of deformable target in 3d ultrasound images // 2015 IEEE International Conference on Robotics and Automation (ICRA). P. 2430–2435. https://doi.org/10.1109/ICRA.2015.7139523. ISSN: 1050-4729.
- Royer L., Krupa A., Dardenne G., Bras A.L., Marchand E., Marchal M. Realtime target tracking of soft tissues in 3d ultrasound images based on robust visual information and mechanical simulation // Medical Image Analysis. 2017. V. 35. P. 582–598. ISSN 1361-8415. https://doi.org/10.1016/j.media.2016.09.004
- Kajihara K., Huang S., Bergstrom N., Yamakawa Y., Ishikawa M. Tracking of trajectory with dynamic deformation based on dynamic compensation concept // 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2017. P. 1979–1984. https://doi.org/10.1109/ROBIO.2017.8324709
- Zhou H., Ma J., Tan C.C., Zhang Y., Ling H. Cross-weather image alignment via latent generative model with intensity consistency // IEEE Transactions on Image Processing. 2020. V. 29. P. 5216–5228. https://doi.org/10.1109/TIP.2020.2980210
- Toriya H., Dewan A., Kitahara I. Sar2opt: Image alignment between multi-modal images using generative adversarial networks // IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. 2019. P. 923–926. https://doi.org/10.1109/IGARSS.2019.8898605
- Shingo Kagami, K.H. Kotaro Omi: Alignment of a flexible sheet object with position-based and image-based visual servoing // Advanced Robotics. 2016. V. 30. P. 965–978. https://doi.org/10.1080/01691864.2016.1183518
- Xi Shen, A.A.E.M.A. Francois Darmon. Ransac-flow: Generic two-stage image alignment // Computer Vision-ECCV 2020. V. 12349. P. 618–637.
- Dong Y., Liang T., Zhang Y., Du B. Spectral spatial weighted kernel manifold embedded distribution alignment for remote sensing image classification // IEEE Transactions on Cybernetics. (2021). V. 51(6). P. 3185–3197. https://doi.org/10.1109/TCYB.2020.3004263
- Mathiassen K., Glette K., Elle O.J. Visual servoing of a medical ultrasound probe for needle insertion // 2016 IEEE International Conference on Robotics and Automation (ICRA). P. 3426–3433. https://doi.org/10.1109/ICRA.2016.7487520
- Mura M., Abu-Kheil Y., Ciuti G., Visentini-Scarzanella M., Menciassi A., Dario P., Dias J., Seneviratne L. Vision-based haptic feedback for capsule endoscopy navigation: a proof of concept // Micro-Bio Robot. V. 11. P. 35–45. https://doi.org/10.1007/s12213-016-0090-2 Accessed 2021-03-23.
- Malti A., Ta¨ıx M., Lamiraux F. A general framework for planning landmark-based motions for mobile robots // Advanced Robotics. 2011. V. 25. No. (11–12). P. 1427–1450. https://doi.org/10.1163/016918611X579457
- Sengupta A., Krupa A., Marchand E. Visual Tracking of Deforming Objects Using Physics-based Models // ICRA 2021 – IEEE International Conference on Robotics and Automation 2021.
- Feng X., Mei W., Hu D. A Review of Visual Tracking with Deep Learning // Atlantis Press. (2016). P. 231–234. ISSN: 1951-6851.
- Marvasti-Zadeh S.M., Cheng L., Ghanei-Yakhdan H., Kasaei S. Deep Learning for Visual Tracking: A Comprehensive Survey // IEEE Transact. Intelligtnt Transport. V. 23. No. 5. 2021. P. 1–26.
- Malti A., Hartley R., Bartoli A., Kim J.-H. Monocular template-based 3d reconstruction of extensible surfaces with local linear elasticity // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013.
- Malti A., Bartoli A., Hartley R. A linear least-squares solution to elastic shape-fromtemplate // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015.
- Malti A., Herzet C. Elastic shape-from-template with spatially sparse deforming forces // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
- Casillas-Perez D., Pizarro D., Fuentes-Jimenez D., Mazo M., Bartoli A. Equiareal Shape-from-Template // J. Math. Imaging Vision. 2019. V. 61. No. 5. P. 607–626.
- Ben-Israel A., Greville T.N.E. Generalized Inverses Theory and Applications // Springer. 2003. Google-Books-ID: o zXUXaqGU8C
- Saidi F., Malti A. Fast and accurate nonlinear hyper-elastic deformation with a posteriori numerical verification of the convergence of solution: Application to the simulation of liver deformation // Numerical Methods in Biomedical Engineering. 2021. V. 37. No. 5. https://doi.org/10.1002/cnm.3444
- Chaumette F., Hutchinson S. Visual servo control. I. basic approaches // IEEE Robot. Autom. Magaz. 2006 V. 13. No. 4. P. 82–90. https://doi.org/10.1109/MRA.2006.250573
- Murray R.M., Li Z., Sastry S.S., Sastry S.S. A Mathematical Introduction to Robotic Manipulation // CRC Press. 1994. https://doi.org/10.1201/9781315136370
Supplementary files
