Morphological Features and Temporary Characteristics of the Process of Muscle Tissue Regeneration in Planaria Polycelis tenuis (Platyhelminthes)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A body musculature of the planarian Polycelis tenuis (Turbellaria, Platyhelminthes) has been investigated by fluorescence microscopy using histochemical staining of whole preparations with fluorescently-labeled phalloidin, which stains muscle cells due to irreversible binding to actin filaments. The results showed that the musculature of the body wall contains circular, diagonal and longitudinal muscle fibers. The circular fibers are the thinnest ones and densely located within the outer layer of the muscle. The longitudinal fibers are thick, gathered into bundles. Individual diagonal muscle fibers are located at a significant distance, in two directions and at an angle to each other. In the work, the process of muscle tissue regeneration in P. tenuis is considered after removal of the planarian’s head. The current study investigates tissue regeneration on days 3, 5, 7, 10 and 13 following tissue amputation. The microscopy images provided valuable information about the main stages of muscle tissue regeneration and their characteristic features. It has been shown that the muscular system in P. tenuis has awesome regenerative abilities and tissue is regenerated within 10–13 days.

About the authors

G. V Kuznetsov

Institute of Cell Biophysics, Russian Academy of Sciences

Email: Mansurg999@yandex.ru
Pushchino, Russia

N. D Kreshchenko

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

References

  1. Шейман И. М., Крещенко Н. Д. и Нетреба М. В. Процесс регенерации у планарий разных видов. Онтогенез, 41 (2), 114-119 (2010).
  2. Тирас Х. П., Петрова О. Н., Мякишева С. Н. и Асланиди К. Б. Формирование регенерационной бластемы у планарии Girardia tigrina. Фундаментальные исследования, 7, 493-500 (2015). EDN: UEAHIF
  3. Никанорова Д. Д., Купряшова Е. Е. и Костюченко Р. П. Регенерация у аннелид: клеточные источники, тканевые перестройки и дифференциальная экспрессия генов. Онтогенез, 51 (3), 177-192 (2020). doi: 10.31857/S0475145020030040
  4. Rink J. C. Stem cell systems and regeneration in planaria. Dev. Genes Evol., 223, 67-84 (2013). doi: 10.1007/s00427-012-0426-4
  5. Bowen D., den Hollander J. E., and Lewis G. H. J. Cell death and acid phosphatase activity in the regenerating planarian Polycelis tenuis. Differentiation, 21, 160 (1982).
  6. Molina M. D. and Cebrià F. Decoding stem cells: an overview on Planarian stem cell heterogeneity and lineage progression. Biomolecules, 11 (10), 1532 (2021). doi: 10.3390/biom11101532
  7. Mair G. R., Maule A. G., Shaw C., and Halton D. W. Muscling in on parasitic flatworm. Parasitol. Today, 14 (2), 73-76 (1998). doi: 10.1016/s0169-4758(97)01182-4
  8. Kreshchenko N. D. Some details on the morphological structure of planarian musculature identified by fluorescent and confocal laser-scanning microscopy. Biophysics, 62 (2), 271 (2017).
  9. Reuter M., Mäntylä K., and Gustafsson M. K. S. Organization of the orthogon - main and minor nerve cords. Hydrobiologia, 383, 175-182 (1998). doi: 10.1023/A:1003478030220
  10. Mair G. R., Maule A. G., Day T. A., and Halton D. W. A confocal microscopical study of the musculature of adult Schistosoma mansoni. Parasitology, 121, 163—170 (2000). doi: 10.1017/s0031182099006174
  11. Tolstenkov O. O., Prokofiev V. V., Terenina N. B., and Gustafsson M. K. S. The neuro-muscular system in Cercaria with different patterns of locomotion. Parasitol. Res., 108,1219-1227 (2011). doi: 10.1007/s00436-010-2166-6
  12. Cebria F., Vispo M., Bueno D., Carranza S., Newmark P., and Romero R. Myosin heavy chain gene in Dugesia (G.) tigrina: A tool for studying muscle regeneration in planarians. Int. J. Dev. Biol., Suppl. 1, 177S-178S (1996). PMID: 9087750
  13. Cebria F. and Romero R. Body-wall muscle restoration dynamics are different in dorsal and ventral blastemas during planarian anterior regeneration. Belg. J. Zool., 131 (1), 5-9 (2001).
  14. Orii H., Ito H., and Watanabe K. Anatomy of the planarian Dugesia japonica I. The muscular system revealed by antisera against myosin heavy chains. Zoolog. Sci., 19 (10), 1123-1131 (2002). doi: 10.2108/zsj.19.1123
  15. Morita M., Best J. B., and Noel J. Electron microscopic studies of planarian regeneration. I: Fine structure of neoblasts in Dugesia dorotocephala. J. Ultrastructure Res., 27, 7 (1969). doi: 10.1016/S0022-5320(69)90017-3
  16. Planarian Regeneration: Methods and Protocols. Ed. by J.C. Rink (Methods Mol. Biol., Vol. 1774, 2018). doi: 10.1007/978-1-4939-7802-1
  17. Wulf E., Deboben A., Bautz F. A., Faulstich H., and Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc. Natl. Acad. Sci. USA, 76 (9), 4498-4502 (1979). doi: 10.1073/pnas.76.9.4498
  18. Maule A. G., Mair G. R., and Halton D. W. The neuromuscular system of the sheep tapeworm Moniezia expansa Invertebrate Neuroscience, 20, 17 (2020). doi: 10.1007/s10158-020-00246-2
  19. Krupenko D. Y. Muscle system of Diplodiscus subclavatus (Trematoda: Paramphistomida) cercariae, pre-ovigerous, and ovigerous adults. Parasitol. Res., 113, 941 (2014). doi: 10.1007/s00436-013-3726-3
  20. Pascolini R., Panara F., Di Rosa I., Fagotti A., and LorvikS. Characterization and fine-structural localization of actin-and fibronectin-like proteins in planaria (Dugesia lugubris s. l.). Cell Tissue Res., 267, 499 (1992). doi: 10.1007/BF00319372
  21. Крещенко Н. Д. Изучение роли серотонина в мышечной функции у планарий. Биол. мембраны, 37 (1), 34-44 (2020). doi: 10.31857/S0233475520010065
  22. Толстенков О. О., Теренина Н. Б., Шалаева Н. М. и Гайворонская Т. В. Организация мышечной системы и распределение NO-ергических и серотонинергических элементов у трематод Allocreadium isoporum Looss, 1894 (Allocreadiidae) и Paramphistomum cervi Zeder 1790 (Paramphistomatidae). Зоология беспозвоночных, 4 (2), 139 (2007).
  23. Salo E. and Baguna J. Regeneration and pattern formation in planarians. II. Local origin and role of cell movements in blastema formation. Development, 107 (1), 69-76 (1989). doi: 10.1242/dev.107.1.69
  24. Salo E., Abril J. F., Adell T., Cebria F., Eckelt K., Fernandez-Taboada E., Handberg-Thorsager M., Iglesias M., Molina M. D., and Rodriguez-Esteban G. Planarian regeneration: achievements and future directions after 20 years of research. Int. J. Dev. Biol., 53 (8-10), 1317-1327 (2009). doi: 10.1387/ijdb.072414es
  25. Reuter M., Sheiman I. M., Gustafsson M. K. S., Halton D. W., Maule A. G., and Shaw C. Development of the nervous system in Dugesia tigrina during regeneration after fission and decapitation. Invertebrate Reproduction and Development, 29 (3), 199-211 (1996). doi: 10.1080/07924259.1996.9672514
  26. Bueno D., Baguna J., and Romero R. Cell-, tissue-, and position-specific monoclonal antibodies against the planarian Dugesia (Girardia) tigrina. Histochem. Cell. Biol., 107 (2), 139-149 (1997). doi: 10.1007/s004180050098
  27. Kreshchenko N. D., Reuter M., Sheiman I. M., Halton D. W., Johnston R. N., Shaw C., and Gustafsson M. K. S. Relationship between musculature and nervous system in the regenerating pharynx in Girardia tigrina (Plathelminthes). Invertebrates Reproduction and Development, 35 (2), 109-125 (1999). doi: 10.1080/07924259.1999.9652375
  28. Cebria F., Vispo M., Newmark P. A., Bueno D., and Romero R. Myocyte differentiation and body wall muscle regeneration in the planarian Girardia tigrina. Dev. Genes Evol., 207 (5), 306-316 (1997). doi: 10.1007/s004270050118
  29. Fraguas S., Barberan S., and Cebria F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev. Biol., 354 (1), 87-101 (2011). doi: 10.1016/j.ydbio.2011.03.023
  30. Fraguas S., Barberan S., Iglesias M., Rodriguez-Esteban G., and Cebria F. egr-4, A target of EGFR signaling, is required for the formation of the brain primordia and head regeneration in planarians. Development, 141 (9), 1835 (2014). doi: 10.1242/dev.101345
  31. Fraguas S., Umesono Y., Agata K., and Cebria F. Analyzing pERK activation during planarian regeneration. Methods Mol. Biol., 1487, 303-315 (2017). doi: 10.1007/978-1-4939-6424-6_23

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».