Betahistine Normalizes the State of Mitochondria in Deiters Neurons during Vestibular Stimulation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The state of mitochondria in neurons of the lateral vestibular nucleus of Deiters in mice after 8-hour vestibular stimulation was studied. It was shown that an hour after stimulation, significant changes occurred in the mitochondria of Deiters neurons: an increase in area, a disruption in the structure of cristae, and the presence of mitophagosomes. At the same time, the mRNA levels of proteins-markers of mitochondrial biogenesis (PGC-1α), their division (DRP-1), and fusion of the outer and inner mitochondrial membranes (MFN1, MFN2, OPA) increased, indicating activation of mitogenesis in Deiters neurons as a result of stimulation of the vestibular system. The administration of betahistine 30 minutes before stimulation at a dose of 300 mg/kg prevented mitochondrial disorders and the formation of mitophagosomes. The obtained data indicate that under increased vestibular stimulation, Deiters neurons can undergo significant damage. The revealed mechanisms of mitochondrial damage allow us to define a potential strategy for the treatment of diseases associated with impaired mitochondrial dynamics (e.g., neurodegenerative diseases or ischemia).

About the authors

I. B Mikheeva

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: mikheirina@yandex.ru
Pushchino, Moscow Region, Russia

N. S Zhuykova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

E. R Shafikova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

A. I Panait

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

L. L Pavlik

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

V. I Arkhipov

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Pushchino, Moscow Region, Russia

References

  1. Provensi G., Blandina P., and Passani M. B. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology, 106, 3–12 (2016). doi: 10.1016/j.neuropharm.2015.07.002
  2. Lian J., Huang X. F., Pai N., and Deng C. Ameliorating antipsychotic-induced weight gain by betahistine: Mechanisms and clinical implications. Pharmacol Res., 106, 51– 63 (2016). doi: 10.1016/j.phrs.2016.02.011
  3. Takeda N., Matsuda K., Fukuda J., Sato G., Uno A., and Kitahara T. Vestibular compensation: Neural mechanisms and clinical implications for the treatment of vertigo. Auris Nasus Larynx, 51 (2), 328–336 (2024).doi: 10.1016/j.anl.2023.11.009
  4. Lacour M. Betahistine treatment in managing vertigo and improving vestibular compensation: clarification. J. Vestib Res., 23 (3), 139–151 (2013). doi: 10.3233/VES-130496
  5. Wu P., Cao W., Hu Y., and Li H. Effects of vestibular rehabilitation, with or without betahistine, on managing residual dizziness after successful repositioning manoeuvres in patients with benign paroxysmal positional vertigo: a protocol for a randomised controlled trial. BMJ Open, 9 (6), e026711 (2019).doi: 10.1136/bmjopen-2018-026711
  6. Mani V . and Arfeen M. Betahistine's neuroprotective actions against lipopolysaccharide-induced neurotoxicity: Insights from experimental and computational studies. Brain Sci., 14 (9), 876 (2024).doi: 10.3390/brainsci14090876
  7. Mani V. Betahistine protects doxorubicin-induced memory deficits via cholinergic and anti-inflammatory pathways in mouse brain. Int. J. Pharmacol., 17 (8), 584–595 (2021).
  8. Angelaki D. E., Klier E. M., and Snyder L. H. A vestibular sensation: probabilistic approaches to spatial perception. Neuron, 64 (4), 448–461(2009).doi: 10.1016/j.neuron.2009.11.010
  9. Strupp M., Dlugaiczyk J., Ertl-Wagner B. B., Rujescu D., Westhofen M., and Dieterich M. Vestibular disorders. Dtsch. Arztebl. Int., 117 (17), 300–310 (2020).doi: 10.3238/arztebl.2020.0300
  10. Pokhrel P. K., Hall R., Pendergrass M., and Kaur J. Vestibular disorders. Prim. Care: Clinics in Office Practice, 52 (1), 15–25 (2025). doi: 10.1016/j.pop.2024.09.004
  11. Giacomello M., Pyakurel A., Glytsou C., and Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol., 21, 204–224 (2020).doi: 10.1038/s41580-020-0210-12
  12. Song J., Herrmann J.M., and Becker T. Quality control of the mitochondrial proteome. Nat. Rev. Mol. Cell Biol., 22, 54–70 (2021). doi: 10.1038/s41580-020-00300-2
  13. Kondadi A. K. and Reichert A. S. Mitochondrial dynamics at different levels: From cristae dynamics to interorganellar cross talk. Annu. Rev. Biophys., 53 (1), 147–168 (2024). doi: 10.1146/annurev-biophys-030822-020736
  14. Imaizumi M., Miyazaki S., and Onodera K. Effects of betahistine, a histamine H1 agonist and H3 antagonist, in a light/dark test in mice. Methods Find. Exp. Clin. Pharmacol., 18 (1), 19–24 (1996). PMID: 8721252
  15. The ALLEN Mouse Brain Atlas: https://mouse.brainmap.org/static/atlas
  16. Mikheeva I. B., Malkov A. E., Pavlik L. L., Arkhipov V. I., and Levin S. G. Effect of TGF-beta1 on long-term synaptic plasticity and distribution of AMPA receptors in the CA1 field of the hippocampus. Neurosci. Lett., 704, 95–99 (2019). doi: 10.1016/j.neulet.2019.04.005
  17. Zhang Z. H., Liu L. P., Fang Y., Wang X. C., Wang W., Chan Y. S., Wang L., Li H., Li Y. Q., and Zhang F. X. A new vestibular stimulation mode for motion sickness with emphatic analysis of pica. Front. Behav. Neurosci., 16, 882695 (2022). doi: 10.3389/fnbeh.2022.882695
  18. Curthoys I. S. and Halmagyi G. M. Vestibular compensation: A review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J. Vestibular Res., 5 (2), 67–107 (1995).
  19. Dutia M. B. Mechanisms of vestibular compensation: Recent advances. Curr. Opin. Otolaryngology & Head and Neck Surg., 18 (5), 420–424(2010).
  20. Smith P. F. and Darlington C. L. Neuroplasticity and vestibular compensation. J. Vestibular Res., 23 (1), 3–15 (2013).
  21. Han B., Jiang W., Cui P., Zheng K., Dang C., Wang J., Li H., Chen L., Zhang R., Wang Q. M., Ju Z., and Hao J. Microglial PGC-1α protects against ischemic brain injury by suppressing neuroinflammation. Genome Med., 13 (1), 47 (2021). doi: 10.1186/s13073-021-00863-5
  22. Liu X., Li T., Tu X., Xu M., and Wang J. Mitochondrial fission and fusion in neurodegenerative diseases: Ca2+ signalling. Mol. Cell Neurosci., 132, 103992 (2025).doi: 10.1016/j.mcn.2025.103992
  23. Schrepfer E. and Scorrano L. Mitofusins, from Mitochondria to Metabolism. Mol. Cells, 61 (5), 683–694 (2016). doi: 10.1016/j.molcel.2016.02.022
  24. Bell M. B., Bush Z., McGinnis G. R., and Rowe G. C. Adult skeletal muscle deletion of Mitofusin 1 and 2 impedes exercise performance and training capacity. J. Appl. Physiol., 126 (2), 341–353(2019).doi: 10.1152/japplphysiol.00719.2018
  25. Shields L. Y., Kim H., Zhu L., Haddad D., Berthet A., Pathak D., Lam M., Ponnusamy R., Diaz-Ramirez L. G., Gill T. M., Sesaki H., Mucke L., and Nakamura K. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis., 6 (4), e1725 (2015). doi: 10.1038/cddis.2015.94
  26. Cho B., Choi S. Y., Cho H. M., Kim H. J., and Sun W. Physiological and pathological significance of dynaminrelated protein 1 (drp1)-dependent mitochondrial fission in the nervous system. Exp. Neurobiol., 22 (3), 149–157 (2013). doi: 10.5607/en.2013.22.3.149
  27. Galluzzi L., Baehrecke E. H., Ballabio A., Boya P., Bravo-San Pedro J. M., Cecconi F., Choi A. M., Chu C. T., Codogno P., Colombo M. I., Cuervo A. M., Debnath J., Deretic V., Dikic I., Eskelinen E. L., Fimia G. M., Fulda S., Gewirtz D. A., Green D. R., Hansen M., Harper J. W., Jäättelä M., Johansen T., Juhasz G., Kimmelman A. C., Kraft C., Ktistakis N. T., Kumar S., Levine B., Lopez-Otin C., Madeo F., Martens S., Martinez J., Melendez A., Mizushima N., Münz C., Murphy L. O., Penninger J. M., Piacentini M., Reggiori F., Rubinsztein D. C., Ryan K. M., Santambrogio L., Scorrano L., Simon A. K., Simon H. U., Simonsen A., Tavernarakis N., Tooze S. A., Yoshimori T., Yuan J., Yue Z., Zhong Q., and Kroemer G. Molecular definitions of autophagy and related processes. EMBO J., 36 (13), 1811–1836 (2017).doi: 10.15252/embj.201796697
  28. Mouli P. K., Twig G., and Shirihai O. S. Frequency and selectivity of mitochondrial fusion are key to its quality maintenance function. Biophys J., 96 (9), 3509–3518 (2009). doi: 10.1016/j.bpj.2008.12.3959
  29. Nah J., Yuan J., and Jung Y. K. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells, 38 (5), 381–389 (2015).doi: 10.14348/molcells.2015.0034
  30. Zhu J., Wang K. Z., and Chu C. T. After the banquet: mitochondrial biogenesis, mitophagy, and cell survival. Autophagy, 9 (11), 1663–1676 (2013). doi: 10.4161/auto.241
  31. Guth P. S., Shipon S., Valli P., Mira E., and Benvenuti C. A pharmacological analysis of the effects of histamine and betahistine on the semicircular canal. In: Vertigine e Betaistine, Ed. by C. Benvenuti (Formenti, Milan, Italy, 2000), pp. 19–30.
  32. Soto E., Chávez H., Valli P., Benvenuti C., and Vega R. Betahistine produces a postsynaptic inhibition on the excitability of the primary afferent neurons in the vestibular endorgans. Acta Otolaryngol., 545 (Suppl.), 19–24 (2001). doi: 10.1080/000164801750388045
  33. Chávez O., Vega R., and Soto E. Histamine (H3) receptors modulate the excitatory amino acid receptor response of the vestibular afferent. Brain Res., 1064, 1–9 (2005). doi: 10.1016/j.brainres.2005.10.027

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».