The Effect of Cholesterol on Spermatozoa Membranes: Investigation Using Spin Probes
- Authors: Mironova A.G1, Trubitsin B.V2, Simonenko E.Y.2, Sybachin A.V2, Yakovenko S.A2, Tikhonov A.N1
-
Affiliations:
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 70, No 4 (2025)
- Pages: 704–714
- Section: Cell biophysics
- URL: https://journal-vniispk.ru/0006-3029/article/view/306896
- DOI: https://doi.org/10.31857/S0006302925040096
- EDN: https://elibrary.ru/LKPJYU
- ID: 306896
Cite item
Abstract
About the authors
A. G Mironova
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
Email: agm90@mail.ru
Moscow, Russia
B. V Trubitsin
Lomonosov Moscow State UniversityMoscow, Russia
E. Yu Simonenko
Lomonosov Moscow State UniversityMoscow, Russia
A. V Sybachin
Lomonosov Moscow State UniversityMoscow, Russia
S. A Yakovenko
Lomonosov Moscow State UniversityMoscow, Russia
A. N Tikhonov
N.M. Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscow, Russia
References
- Tong J., Briggs M. M., and McIntosh T. J. Water permeability of aquaporin-4 channel depends on bilayer composition, thickness, and elasticity. Biophys. J., 103 (9), 1899– 1908 (2012). doi: 10.1016/J.BPJ.2012.09.025
- Zakim D. The role of membrane lipids in the regulation of membrane-bound enzymes. Progr. Liver Dis., 8, 65–80 (1986).
- Reichow S. L. and Gonen T. Lipid-protein interactions probed by electron crystallography. Curr. Opin. Struct. Biol.., 19 (5), 560–565 (2009).doi: 10.1016/J.SBI.2009.07.012
- Simons K. and Toomre D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol., 1 (1), 31–39 (2000).doi: 10.1038/35036052
- Keber R., Rozman D., and Horvat S. Sterols in spermatogenesis and sperm maturation. J. Lipid Res., 54 (1), 20–33 (2013). doi: 10.1194/JLR.R032326
- Garolla A., Šabović I., Tescari S., De Toni L., Menegazzo M., Cosci I., De Filippis V., Giarola M., and Foresta C. Impaired sperm function in infertile men relies on the membrane sterol pattern. Andrology, 6 (2), 325– 334 (2018). doi: 10.1111/ANDR.12468
- Moon K. H. and Bunge R. G. Observations on the biochemistry of human semen. 4. Cholesterol. Fertil. Steril., 21 (1), 80–83 (1970).doi: 10.1016/S0015-0282(16)37272-7
- Ohvo-Rekilä H., Ramstedt B., Leppimäki P., and Slotte J. P. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res., 41 (1), 66–97 (2002).doi: 10.1016/S0163-7827(01)00020-0.
- Johnson G. D., Lalancette C., Linnemann A. K., Leduc F., Boissonneault G., and Krawetz S. A. The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction, 141(1), 21–36 (2011).doi: 10.1530/REP-10-0322
- Sosnicki D. M., Cohen R., Asano A., Nelson J. L., Mukai C., Comizzoli P., and Travis A. J. Segmental differentiation of the murine epididymis: identification of segment-specific, GM1-enriched vesicles and regulation by luminal fluid factors. Biol. Reprod., 109 (6), 864–877 (2023). doi: 10.1093/BIOLRE/IOAD120
- Cheng X., Xie H., Xiong Y., Sun P., Xue Y., and Li K. Lipidomics profiles of human spermatozoa: insights into capacitation and acrosome reaction using UPLC-MS-based approach. Front. Endocrinol. (Lausanne), 14, 1273878 (2023). doi: 10.3389/FENDO.2023.1273878
- Gangwar D. K. and Atreja S. K. Signalling events and associated pathways related to the mammalian sperm capacitation. Reprod. Domest. Anim., 50 (5), 705–711 (2015). doi: 10.1111/RDA.12541
- Suhaiman L. and Belmonte S. A. Lipid remodeling in acrosome exocytosis: unraveling key players in the human sperm. Front. Cell Devel. Biol., 12, 1457638 (2024).
- Cohen R., Mukai C., and Travis A. J. Lipid regulation of acrosome exocytosis. Adv. Anat. Embryol. Cell Biol., 220, 107–127 (2016). doi: 10.1007/978-3-319-30567-7_6
- Bernecic N. C., Gadella B. M., de Graaf S. P., and LeahyT. Synergism between albumin, bicarbonate and cAMP upregulation for cholesterol efflux from ram sperm. Reproduction, 160 (2), 269–280 (2020).doi: 10.1530/REP-19-0430
- Bernecic N. C., de Graaf S. P., Leahy T., and Gadella B. M. HDL mediates reverse cholesterol transport from ram spermatozoa and induces hyperactivated motility. Biol. Reprod., 104 (6), 1271–1281 (2021).doi: 10.1093/BIOLRE/IOAB035
- Leahy T. and Gadella B. M. New insights into the regulation of cholesterol efflux from the sperm membrane. Asian. J. Androl., 17 (4), 561–567 (2015).doi: 10.4103/1008-682X.153309
- Elzanaty S., Erenpreiss J., and Becker C. Seminal plasma albumin: origin and relation to the male reproductive parameters. Andrologia, 39 (2), 60–65 (2017).doi: 10.1111/J.1439-0272.2007.00764.X
- Jafurulla M. and Chattopadhyay A. Structural stringency of cholesterol for membrane protein function utilizing stereoisomers as novel tools: A review. Methods Mol. Biol., 1583, 21–39 (2017). doi: 10.1007/978-1-4939-6875-6_3
- Yeagle P. L. Modulation of membrane function by cholesterol. Biochimie, 73 (10), 1303–1310 (1991).doi: 10.1016/0300-9084(91)90093-G
- Накидкина А. Н. и Кузьмина Т. И. Гомеостаз кальция в сперматозоидах: механизмы регуляции и биологическая роль. Биологич. мембраны, 39 (1), 3–17 (2022). doi: 10.31857/S0233475522010078
- Grouleff J., Irudayam S. J., Skeby K. K., and Schiøtt B. The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta, 1848 (9), 1783–1795 (2015).doi: 10.1016/J.BBAMEM.2015.03.029
- Suwattanasophon C., Wolschann P., and Faller R. Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane. J. Biomol. Struct. Dyn., 34 (2), 318– 326 (2016). doi: 10.1080/07391102.2015.1030691
- Yesylevskyy S. and Demchenko A. Cholesterol behavior in asymmetric lipid bilayers: insights from molecular dynamics simulations. Methods Mol. Biol., 1232, 291–306 (2015). doi: 10.1007/978-1-4939-1752-5_20
- De Toni L., Sabovic I., De Filippis V., Acquasaliente L., Peterle D., Guidolin D., Sut S., Di Nisio A., Foresta C., and Garolla A. Sperm cholesterol content modifies sperm function and TRPV1-mediated sperm migration. Int. J. Mol. Sci., 22 (6), 3126 (2021).doi: 10.3390/IJMS22063126
- Han S., Chu X. P., Goodson R., Gamel P., Peng S., Vance J., and Wang S. Cholesterol inhibits human voltage-gated proton channel hHv1. Proc. Natl. Acad. Sci. USA, 119 (36), e2205420119 (2022).doi: 10.1073/PNAS.2205420119
- Vaquer C. C., Suhaiman L., Pavarotti M. A., Arias R. J., Pacheco Guiñazú A. B., De Blas G. A., and Belmonte S. A. The pair ceramide 1-phosphate/ceramide kinase regulates intracellular calcium and progesteroneinduced human sperm acrosomal exocytosis. Front. Cell Dev. Biol., 11, 1148831 (2023).doi: 10.3389/FCELL.2023.1148831
- Vaquer C. C., Suhaiman L., Pavarotti M. A., De Blas G. A., and Belmonte S.A. Ceramide induces a multicomponent intracellular calcium increase triggering the acrosome secretion in human sperm. Biochim. Biophys. Acta Mol. Cell Res., 1867 (7), 118704 (2020).doi: 10.1016/J.BBAMCR.2020.118704
- De Toni L., Cosci I, Sabovic I., Di Nisio A., Guidolin D., Pedrucci F., Finocchi F., Dall’Acqua S., Foresta C., Ferlin A., and Garolla A. Membrane cholesterol inhibits progesterone-mediated sperm function through the possible involvement of ABHD2. Int. J. Mol. Sci., 24 (11), 9254 (2023). doi: 10.3390/IJMS24119254
- Belmonte S. A., López C. I., Roggero C. M., De Blas G. A., Tomes C. N., and Mayorga L. S. Cholesterol content regulates acrosomal exocytosis by enhancing Rab3A plasma membrane association. Dev. Biol., 285 (2), 393–408 (2005). doi: 10.1016/J.YDBIO.2005.07.001
- Davis M. E. and Brewster M. E. Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov., 3, 1023–1035 (2004). doi: 10.1038/NRD1576
- Christian A. E., Haynes M. P., Phillips M. C., and Rothblat G. H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res., 38, 2264–2272 (1997). doi: 10.1016/S0022-2275(20)34940-3
- Kilsdonk E. P. C., Yancey P. G., Stoudt G. W., Bangerter F. W., Johnson W. J., Phillips M. C., and Rothblat G. H. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem., 270, 17250–17256 (1995).doi: 10.1074/JBC.270.29.17250
- Castagne D., Fillet M., Delattre L., Evrard B., Nusgens B., and Piel G. Study of the cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J. Incl. Phenom. Macrocycl. Chem., 63, 225–231 (2009).doi: 10.1007/S10847-008-9510-9/METRICS
- Szente L. and Fenyvesi É. Cyclodextrin-lipid complexes: cavity size matters. Struct. Chem., 28, 479–492 (2017). doi: 10.1007/S11224-016-0884-9/METRICS
- Ohtani Y., Irie T., Uekama K., Fukunaga K., and Pitha J. Differential effects of alpha-, betaand gamma-cyclodextrins on human erythrocytes. Eur. J. Biochem., 186, 17–22 (1989). doi: 10.1111/J.1432-1033.1989.TB15171.X
- Wenz G. Influence of intramolecular hydrogen bonds on the binding potential of methylated β-cyclodextrin derivatives. Beilstein J. Org. Chem., 8, 1890–1895 (2012).doi: 10.3762/BJOC.8.218
- Fenyvesi É., Szemán J., Csabai K., Malanga M., and Szente L. Methyl-beta-cyclodextrins: the role of number and types of substituents in solubilizing power. J. Pharm. Sci., 103, 1443–1452 (2014). doi: 10.1002/JPS.23917
- WHO laboratory manual for the examination and processing of human semen. World Health Organization, 6, 1– 276 (2021).
- Schorn K. and Marsh D. Extracting order parameters from powder EPR lineshapes for spin-labelled lipids in membranes. Spectrochim. Acta Part A: Mol. Biomol. Spectroscopy, 53 (12), 2235–2240 (1997).
- Кузнецов А. Н. Метод спинового зонда (Мир, М., 1976).
- McConnell H. M. and McFarland B. G. Physics and chemistry of spin labels. Q. Rev. Biophys., 3 (1), 91–136 (1970). doi: 10.1017/S003358350000442X.
- Jost P., Libertini L. J., Hebert V. C., and Griffith O. H. Lipid spin labels in lecithin multilayers. A study of motion along fatty acid chains. J. Mol. Biol., 59 (1), 77–98 (1971). doi: 10.1016/0022-2836(71)90414-1
- Keith A. D., Sharnoff M., and Cohn G. E. A summary and evaluation of spin labels used as probes for biological membrane structure. Biochim. Biophys. Acta, 300 (4), 379–419 (1973). doi: 10.1016/0304-4157(73)90014-2
- Hubbell W. L. and McConnell H. M. Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc., 93 (2), 314–326 (1971).doi: 10.1021/JA00731A005.
- Seelig J. Spin label studies of oriented smectic liquid crystals (a model system for bilayer membranes). J. Amer. Chem. Soc., 92 (13), 3881–3887 (1970).
- Hubbell W. L. and McConnell H. M. Orientation and motion of amphiphilic spin labels in membranes. Proc. Natl. Acad. Sci. USA, 64 (1), 20–27 (1969).doi: 10.1073/PNAS.64.1.20
- Tikhonov A. N. and Subczynski W. K. Application of spin labels to membrane bioenergetics: Photosynthetic systems of higher plants. In: Biomedical EPR, Part A: Free Radicals, Metals, Medicine, and Physiology (Biological Magnetic Resonance, vol. 23), Ed. by S.R. Eaton, G.R. Eaton, and L.J. Berliner (Springer, Boston, USA, 2005), pp. 147– 194. doi: 10.1007/0-387-26741-7_8
- Hsia J. C., Schneider H., and Smith I. C. A spin label study of the influence of cholesterol on phospholipid multibilayer structures. Can. J. Biochem., 49 (5), 514–522 (1971).
- Lapper R. D., Paterson S. J., and Smith I. C. A spin label study of the influence of cholesterol on egg lecithin multibilayers. Can. J. Biochem., 50 (9), 869–881 (1972).
- Schreier-Muccillo S., Butler K. W., and Smith I. C. Structural requirements for the formation of ordered lipid multibilayers a spin probe study. Arch. Biochem. Biophys., 159 (1), 297–311 (1973).doi: 10.1016/0003-9861(73)90456-6
- Smith I. C. P. A spin label study of the organization and fluidity of hydrated phospholipid multibilayers— a model membrane system. Chimia, 25 (11), 349–349 (1971).
- Mailer C., Taylor C. P., Schreier-Muccillo S., and Smith I. C. The influence of cholesterol on molecular motion in egg lecithin bilayers—a variable-frequency electron spin resonance study of a cholestane spin probe. Arch. Biochem. Biophys., 163 (2), 671–678 (1974).doi: 10.1016/0003-9861(74)90528-1
- McIntosh T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim. Biophys. Acta, 513 (1), 43–58 (1978).doi: 10.1016/0005-2736(78)90110-4.
- Pan J., Tristram-Nagle S., and Nagle J. F. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys. Rev. E. Stat. Nonlin. Soft Matter Phys., 80 (2), 021931 (2009). doi: 10.1103/PHYSREVE.80.021931
- Дзюба С. А. Изучение структуры биологических мембран с помощью ESEEM спектроскопии спиновых меток и дейтериевого замещения. Успехи химии, 76 (8), 752–767 (2007).
- Doole F. T., Kumarage T., Ashkar R., and Brown M. F. Cholesterol stiffening of lipid membranes. J. Membr. Biol., 255 (4–5), 385–405 (2022).doi: 10.1007/S00232-022-00263-9.
- Nagle J. F. Measuring the bending modulus of lipid bilayers with cholesterol. Phys. Rev. E., 104 (4-1), 044405 (2021). doi: 10.1103/PHYSREVE.104.044405
- Chen Z. and Rand R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys. J., 73 (1), 267–276 (1997).doi: 10.1016/S0006-3495(97)78067-6
- Moore A. I., Squires E. L., and Graham J. K. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. Cryobiology, 51, 241–249 (2005).doi: 10.1016/J.CRYOBIOL.2005.07.004
- Su bczynski W. K., Pasenkiewicz-Gierula M., Widomska J., Mainali L., and Raguz M. High cholesterol/low cholesterol: Effects in biological membranes: a review. Cell Biochem. Biophys., 75, 369–385 (2017).doi: 10.1007/S12013-017-0792-7
- Миронова А. Г., Афанасьева С. И., Яковенко С. А., Тихонов А. Н. и Симоненко Е. Ю. Использование комплексов включения холестерина на основе произвольно метилированных бета-циклодекстринов для повышения криотолерантности сперматозоидов человека. Биофизика, 69 (6), 1390–1401 (2024).doi: 10.31857/S0006302924060249
Supplementary files
