Expression of Cellular Chaperones and Co-Chaperones Associated with Heat Shock Proteins Hsp90 and Hsp70 in Human Fibrosarcoma HT1080 Cells That Do Not Synthesize Hsp90β
- Authors: Petrenko V.S1, Vrublevskaya V.V1, Morenkov O.S1, Skarga Y.Y1, Zhmurina M.A1
-
Affiliations:
- Institute of Cell Biophysics, Russian Academy of Sciences
- Issue: Vol 70, No 4 (2025)
- Pages: 724–735
- Section: Cell biophysics
- URL: https://journal-vniispk.ru/0006-3029/article/view/306898
- DOI: https://doi.org/10.31857/S0006302925040114
- EDN: https://elibrary.ru/LKTPNT
- ID: 306898
Cite item
Abstract
About the authors
V. S Petrenko
Institute of Cell Biophysics, Russian Academy of Sciences
Email: 79182797935@yandex.ru
Pushchino, Moscow Region, Russia
V. V Vrublevskaya
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, Russia
O. S Morenkov
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, Russia
Y. Y Skarga
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, Russia
M. A Zhmurina
Institute of Cell Biophysics, Russian Academy of SciencesPushchino, Moscow Region, Russia
References
- Taipale M., Jarosz D. F., and Lindquist S. HSP90 at the hub of protein homeostasis, emerging mechanistic insights. Nat. Rev. Mol. Cell. Biol., 11, 515–528 (2010).doi: 10.1038/nrm2918
- Finka A. and Goloubinoff P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones, 18, 591–605 (2013). doi: 10.1007/s12192-013-0413-3
- Neckers L., Mollapour M., and Tsutsumi S. The complex dance of the molecular chaperone Hsp90. Trends Biochem. Sci., 34, 223 (2009).doi: 10.1016/j.tibs.2009.01.006
- Biebl M. M. and Buchner J. Structure, function, and regulation of the Hsp90 machinery. Perspect. Biol., 11 (9), a034017 (2019). doi: 10.1101/cshperspect.a034017
- Wandinger S. K., Richter K., and Buchner J. The Hsp90 chaperone machinery. J. Biol. Chem., 283, 18473 (2008). doi: 10.1038/nrm.2017.20
- Jafari A., Rezaei-Tavirani M., Farhadihosseinabadi B., Taranejoo S., and Zali H. HSP90 and Co-chaperones: Impact on tumor progression and prospects for molecular-targeted cancer therapy. Cancer Invest., 38, 310–328 (2020). doi: 10.1080/07357907.2020.1752227
- Hoter A., El-Sabban M. E., and Naim H. Y. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int. J. Mol. Sci., 19 (9), 2560 (2018). doi: 10.3390/ijms19092560
- Ciocca D. R., Arrigo A. P., and Calderwood S. K. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: An update. Arch. Toxicol., 87, 19 (2013). doi: 10.1007/s00204-012-0918-z
- Dernovsek J. and Tomasic T. Following the design path of isoform-selective Hsp90 inhibitors: Small differences, great opportunities. Pharmacol. Ther., 245, 108396 (2023). doi: 10.1016/j.pharmthera.2023.108396
- Sanchez J., Carter T. R., Cohen M. S., and Blagg B. S. Old and new approaches to target the Hsp90 chaperone. Curr. Cancer Drug Targets., 20 (4), 253 (2020).doi: 10.2174/1568009619666191202101330
- Miyata Y., Nakamoto H., and Neckers L. The therapeutic target Hsp90 and cancer hallmarks. Curr. Pharm. Des., 19 (3), 347 (2013). DOI: 10.2174/ 138161213804143725
- Gupta R. S. Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol. Biol. Evol., 12, 1062–1073 (1995).doi: 10.1093/oxfordjournals.molbev.a040281
- Zuehlke A. D., Beebe K., Neckers L., and Prince T. Regulation and function of the human HSP90AA1 gene. Gene, 570, 8–16 (2015). doi: 10.1016/j.gene.2015.06.018
- Maiti S. and Picard D. Cytosolic Hsp90 isoform-specific functions and clinical significance. Biomolecules, 12, 1166 (2022). doi: 10.3390/biom12091166
- Chang C., Tang X., Woodley D. T., Chen M., and Li W. The distinct assignments for Hsp90α and Hsp90β: More than skin deep. Cells, 12, 277 (2023).doi: 10.3390/cells12020277
- Jing R., Duncan C. B., and Duncan S. A. A small-molecule screen reveals that HSP90β promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates HNF4A turnover. Development, 144, 1764–1774 (2017). doi: 10.1242/dev.146845
- Petrenko V., Vrublevskaya V., Bystrova M., Masulis I., Kopylova E., Skarga Y., Zhmurina M., and Morenkov O. Proliferation, migration, and resistance to oxidative and thermal stresses of HT1080 cells with knocked out genes encoding Hsp90α and Hsp90β. Biochem. Biophys. Res. Commun., 674, 62 (2023).doi: 10.1016/j.bbrc.2023.06.076
- Voss A. K., Thomas T., and Gruss P. Mice lacking HSP90β fail to develop a placental labyrinth. Development, 127, 1–11 (2000). doi: 10.1242/dev.127.1.1
- Echeverria P. C., Briand P. A., and Picard D. A remodeled Hsp90 molecular chaperone ensemble with the novel cochaperone Aarsd1 is required for muscle differentiation. Mol. Cell. Biol., 36, 1310–1321 (2016).doi: 10.1128/MCB.01099-15
- McCormick R. and Vasilaki A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology, 19, 519–536 (2018).doi: 10.1007/s10522-018-9775-3
- Jing E., Sundararajan P., Majumdar I. D., Hazarika S., Fowler S., Szeto A., Gesta S., Mendez A. J., VishnudasV. K., and Sarangarajan R. Hsp90β knockdown in DIO mice reverses insulin resistance and improves glucose tolerance. Nutr. Metab., 15, 11 (2018).doi: 10.1186/s12986-018-0242-6
- Zheng Z. G., Zhang X., Liu X. X., Jin X. X., Dai L., Cheng H. M., Jing D., Thu P. M., Zhang M., and Li H. Inhibition of HSP90 Improves Lipid Disorders by Promoting Mature SREBPs Degradation via the Ubiquitinproteasome System. Theranostics, 9, 5769–5783 (2019). doi: 10.7150/thno.36505
- Liu B. and Qian D. Hsp90α and cell death in cancers: A review. Discov. Oncol., 15 (1), 151 (2024).doi: 10.1007/s12672-024-01021-0.
- Kim S. H., Ji J. H., Park K. T., Kang K. W., Park J. H., Hwang S. W., and Lee E. H. High-level expression of Hsp90β is associated with poor survival in resectable nonsmall-cell lung cancer patients. Histopathology, 67, 509– 519 (2015). doi: 10.1111/his.12676
- Meng J., Liu Y., Han J., Tan Q., and Chen S. Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma. Mol. Cancer, 16, 72 (2017). doi: 10.1186/s12943-017-0639-2
- Meng J., Chen S., Lei Y. Y., Han J. X., Zhong W. L., Wang X. R., Liu Y. R., Gao W. F., Zhang Q., Tan Q., Liu H. J., Zhou H. G., Sun T., and Yang C. Hsp90β promotes aggressive vasculogenic mimicry via epithelialmesenchymal transition in hepatocellular carcinoma. Oncogene, 38, 228–243 (2019).doi: 10.1038/s41388-018-0428-4
- Heck A. L., Mishra S., and Prenzel T. Selective HSP90β inhibition results in TNF and TRAIL mediated HIF1α degradation. Immunobiology, 226, 152070 (2021).doi: 10.1016/j.imbio.2021.152070
- Sato S., Li K., Sakurai N., Hashizume M., Baidya S., Nonaka H., Noguchi K., Ishikawa K., Obuse C., and Takaoka A. Regulation of an adaptor protein STING by Hsp90β to enhance innate immune responses against microbial infections. Cell. Immunol., 356, 104188 (2020). doi: 10.1016/j.cellimm.2020.104188
- Eustace B. K., Sakurai T., Stewart J. K., Yimlamai D., Unger C., Zehetmeier C., Lain B., Torella C., Henning S. W., Beste G., Scroggins B. T., and Neckers L. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat. Cell Biol., 6, 507–514 (2004). doi: 10.1038/ncb1131
- Becker B., Multhoff G., Farkas B., Wild P. J., Landthaler M., and Stolz W. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol., 13, 27–32 (2004).doi: 10.1111/j.0906-6705.2004.00114.x
- Cheng C. and Li W. Secretion of heat shock protein-90 (Hsp90) by normal cells under stress or by tumor cells during invasion, why? Cancer Ther., 6, 765–772 (2008).
- Li W., Sahu D., and Tsen F. Secreted heat shock protein90 (Hsp90) in wound healing and cancer. Biochim. Biophys. Acta, 1823, 730–741 (2012).doi: 10.1016/j.bbamcr.2011.09.009
- Dong H., Zou M., Bhatia A., Jayaprakash P., Hofman F., Ying Q., Chen M., Woodley D., and Li W. Breast cancer MDA-MB-231 cells use secreted heat shock protein-90alpha (Hsp90α) to survive a hostile hypoxic environment. Sci. Rep., 6, 20605 (2016). doi: 10.1038/srep20605
- Livak K. J. and Schmittgen T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–408 (2001). doi: 10.1006/meth.2001.1262
- Fernandez-Fernandez M. R. and Valpuesta J. M. Hsp70 chaperone: A master player in protein homeostasis. F1000Res, 7, 1497 (2018).doi: 10.12688/f1000research.15928.1
- Rosenzweig R., Nillegoda N. B., Mayer M. P., and Bukau B. The Hsp70 chaperone network. Nat. Rev. Mol. Cell Biol., 20, 665–680 (2019).doi: 10.1038/s41580-019-0133-3
- Kim D., Langmead B., and Salzberg S.L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360 (2015). doi: 10.1038/nmeth.3317
- Ben-David U., Siranosian B., Ha G., Tang H., Oren Y., Hinohara K., Strathdee C. A., Dempster J., Lyons N. J., Burns R., Nag A., Kugener G., Cimini B., Tsvetkov P., Maruvka Y. E., O'Rourke R., Garrity A., Tubelli A. A., Bandopadhayay P., Tsherniak A., Vazquez F., Wong B., Birger C., Ghandi M., Thorner A. R., Bittker J. A., Meyerson M., Getz G., Beroukhim R., and Golub T. R. Genetic and transcriptional evolution alters cancer cell line drug response. Nature, 560 (7718), 325–330 (2018).doi: 10.1038/s41586-018-0409-3
- Wang L., Wang S., and Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics, 28, 2184–2185 (2012). doi: 10.1093/bioinformatics/bts356
- Shelton L. B., Koren J., and Blair L. J. Imbalances in the Hsp90 chaperone machinery: Implications for tauopathies. Front. Neurosci., 11, 724 (2017).doi: 10.3389/fnins.2017.00724
- Anders S., Pyl P. T. and Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics, 31, 166–169 (2015).doi: 10.1093/bioinformatics/btu638
- Andrews S. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
- Casden N. and Behar O. An approach for accelerated isolation of genetically manipulated cell clones with reduced clonal variability. J. Cell Sci., 132, jcs217661 (2019).doi: 10.1242/jcs.217661
- Krueger F. A wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore (2012).
- Orellana C. A., Marcellin E., Palfreyman R. W., MunroT. P., Gray P. P., and Nielsen L. K. RNA-Seq highlights high clonal variation in monoclonal antibody producing CHO cells. Biotechnol. J., 13, e1700231 (2018). doi: 10.1002/biot.201700231
- Ran F. A., Hsu P. D., Lin C. Y., Gootenberg J. S., Konermann S., Trevino A. E., Scott D. A., Inoue A., Matoba S., Zhang Y., and Zhang F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154 (6), 1380–1389 (2013).doi: 10.1016/j.cell.2013.08.021
- Петренко В. С., Моренков О. С., Скарга Ю. Ю., Жмурина М. А. и Врублевская В. В. Роль двух изоформ белка теплового шока Hsp90 в обеспечении устойчивости клеток фибросаркомы человека HT1080 к ингибиторам HSP90 и цитотоксическим препаратам. Биофизика, 69 (6), 1214–1223 (2024). doi: 10.31857/S0006302924060086
- Lykke-Andersen S. and Jensen T. H. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol., 16, 665–677 (2015). doi: 10.1038/nrm4063
- Albanese V., Yam A. Y., Baughman J., Parnot C., and Frydman J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells. Cell, 124, 75–88 (2006). doi: 10.1016/j.cell.2005.11.039
- Kajiwara C., Kondo S., Uda S., Dai L., Ichiyanagi T., Chiba T., Ishido S., Koji T., and Udono H. Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice. Biol. Open, 1, 977–982 (2012).doi: 10.1242/bio.2012646
- Qian S. B., McDonough H., Boellmann F., Cyr D. M., and Patterson C. CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature, 440, 551–555 (2006). doi: 10.1038/nature04600
- Shi Z. Z., Zhang J. W., and Zheng S. What we know about ST13, a co-factor of heat shock protein, or a tumor suppressor? J. Zhejiang Univ. Sci. B, 8, 170–176 (2007).doi: 10.1631/jzus.2007.B0170
- Shankavaram U. T., Reinhold W. C., Nishizuka S., Major S., Morita D., Chary K. K., Reimers M. A., Scherf U., Kahn A., Dolginow D., Cossman J., Kaldjian E. P., Scudiero D. A., Petricoin E., Liotta L., Lee J. K., and Weinstein J. N. Transcript and protein expression profiles of the NCI-60 cancer cell panel: an integromic microarray study. Mol. Cancer Ther., 6 (3), 820– 832 (2007). doi: 10.1158/1535-7163.MCT-06-0650
- Fournier M. L., Paulson A., Pavelka N., Mosley A. L., Gaudenz K., Bradford W. D., Glynn E., Li H., Sardiu M. E., Fleharty B., Seidel Ch., Florens L., and Washburn M. P. Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol. Cell. Proteomics, 9, 271–284 (2010).doi: 10.1074/mcp.M900415-MCP200
- Jiang D., Cope A. L., Zhang J., and Pennell M. On the Decoupling of Evolutionary Changes in mRNA and Protein Levels. Mol. Biol. Evol., 40, msad180 (2023).doi: 10.1093/molbev/msad180
- Kurashova N. A., Madaeva I. M., and Kolesnikova L. I. Expression of HSP70 Heat-Shock Proteins under Oxidative Stress. Adv. Gerontol., 10, 20–25 (2020).doi: 10.1134/S2079057020010099
- Evans C. G., Chang L., and Gestwicki J. E. Heat Shock Protein 70 (Hsp70) as an Emerging Drug Target. J. Med. Chem., 53, 4585–4602 (2010). doi: 10.1021/jm100054f
- Backe S. J., Sager R. A., Woodford M. R., Makedon A. M., and Mollapour M. Post-translational modifications of Hsp90 and translating the chaperone code. J. Biol. Chem., 295, 11099–11117 (2020).doi: 10.1074/jbc.REV120.011833
Supplementary files
