Stochastic Modeling of Energy Balance in MCF-7 Breast Cancer Cells Taking into Account Transposon Activity and Different Methylation States

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Cancer cells exhibit increased activity of mobile genetic elements (transposons). A possible anticancer strategy involves exploiting the energy costs associated with abnormal activity of these elements to create conditions of energy starvation within the cell and initiate cell death programs. Here, we propose a stochastic model of energy balance in a cell population considering the energy expenditure associated with retrotransposition of LINE-1 and SINE mobile elements. Parameter values in the model were derived from published data and new experimental measurements of ATP quantities in MCF-7 cells under normal and hypomethylation conditions. Numerical stochastic simulations generated distributions of variables representing the number of mRNA molecules, proteins participating in principal energy-intensive cellular processes, and the number of active LINE-1 and SINE retrotransposons in the genome. Energy expenditure distributions across major cellular processes were also calculated under stationary conditions. Results show that low-energy costs linked to retrotransposition of mobile elements under normal conditions rise considerably upon perturbation of model parameters. These findings could inform practical scenarios influencing energetically mediated initiation of cell death programs in cancer cells through activation of mobile elements.

About the authors

S. R Pavlov

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

E. V Kanov

St. Petersburg State University

Saint Petersburg, Russia

D. N Razgulyaeva

Peter the Great St. Petersburg Polytechnic University

Saint Petersburg, Russia

V. V Gursky

Ioffe Institute

Email: gursky@math.ioffe.ru
Saint Petersburg, Russia

References

  1. Kazazian H. H. Mobile elements: Drivers of genome evolution. Science, 303, 1626–1632 (2004).doi: 10.1126/science.1089670
  2. Mills R. E., Bennett E. A., Iskow R. C., and Devine S. E. Which transposable elements are active in the human genome? Trends Genet., 23, 183–191 (2007).doi: 10.1016/j.tig.2007.02.006
  3. Schrader L. and Schmitz J. The impact of transposable elements in adaptive evolution. Mol. Ecol., 28, 1537–1549 (2019). doi: 10.1111/mec.14794
  4. Kassiotis G. and Stoye J. P. Immune responses to endogenous retroelements: Taking the bad with the good. Nat. Rev. Immunol., 16, 207–219 (2016).doi: 10.1038/nri.2016.27
  5. Elbarbary R. A., Lucas B. A., and Maquat L. E. Retrotransposons as regulators of gene expression. Science, 351 (6274), aac7247 (2016).doi: 10.1126/science.aac7247
  6. Burns K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol., 15, 51–70 (2020).doi: 10.1146/annurev-pathmechdis-012419-032633
  7. Ishak C. A. and De Carvalho D. D. Reactivation of endogenous retroelements in cancer development and therapy. Annu. Rev. Cancer Biol., 4, 159–176 (2020).doi: 10.1146/annurev-cancerbio-030419-033525
  8. Leonova K. I., Brodsky L., Lipchick B., Pal M., Novototskaya L., Chenchik A. A., Sen G. C., Komarova E. A., and Gudkov A. V. P53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. Proc. Natl. Acad. Sci. USA, 110, E89–E98 (2013).doi: 10.1073/pnas.1216922110
  9. Chiappinelli K. B., Strissel P. L., Desrichard A., Li H., Henke C., Akman B., Hein A., Rote N. S., Cope L. M., Snyder A., Makarov V., Buhu S., Slamon D. J., Wolchok J. D., Pardoll D. M., Beckmann M. W., Zahnow C. A., Merghoub T., Chan T. A., and Baylin S. B. Reiner Strick Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell, 162 (5), 974–986 (2015).doi: 10.1016/j.cell.2015.07.011
  10. Roulois D., Loo Yau H., Singhania R., Wang Y., Danesh A., Shen S. Y., Han H., Liang G., Jones P. A., Pugh T. J., O’Brien C., and De Carvalho D. D. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell, 162, 961–973 (2015). doi: 10.1016/j.cell.2015.07.056
  11. Ishak C. A., Classon M., and De Carvalho D. D. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer, 4 (8), 583–597 (2018). doi: 10.1016/j.trecan.2018.05.008
  12. Pradhan R. K. and Ramakrishna W. Transposons: Unexpected players in cancer. Gene, 808, 145975 (2022).doi: 10.1016/j.gene.2021.145975
  13. Павлов С. Р., Гурский В. В., Самсонова М. Г., Канапин А. А. и Самсонова А. А. Управление активностью мобильных элементов в раковых клетках как стратегия для противораковой терапии. Биофизика, 69 (6), 1231–1234 (2024).
  14. Vander Heiden M. G., Cantley L. C., and Thompson C. B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029–1033 (2009). doi: 10.1126/science.1160809
  15. Hanahan D. and Weinberg R. A. Hallmarks of cancer: The next generation. Cell, 144, 646–674 (2011).doi: 10.1016/j.cell.2011.02.013
  16. Kasperski A. and Kasperska R. Bioenergetics of life, disease and death phenomena. Theory Biosci., 137, 155–168 (2018). doi: 10.1007/s12064-018-0266-5
  17. Eguchi Y., Shimizu S., and Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res., 57, 1835–1840 (1997).
  18. Liebertha W., Menza S. A., and Levine J. S. Graded ATP depletion can cause necrosis or apoptosis of cultured mouse proximal tubular cells. Am. J. Physiol., 274, F315– F327 (1998). doi: 10.1152/ajprenal.1998.274.2.F315
  19. Skulachev V. P. Bioenergetic Aspects of apoptosis, necrosis and mitoptosis. Apoptosis., 11, 473–485 (2006).doi: 10.1007/s10495-006-5881-9
  20. Lynch M. and Marinov G. K. The bioenergetic costs of a gene. Proc. Natl. Acad. Sci. USA, 112 (51), 15690–15695 (2015). doi: 10.1073/pnas.1514974112
  21. Weiße A. Y., Oyarzún D. A., Danos V., and Swain P. S. Mechanistic links between cellular trade-offs, gene expression, and growth. Proc. Natl. Acad. Sci. USA, 112 (9), E1038–E1047 (2015). doi: 10.1073/pnas.1416533112
  22. Thomas P., Terradot G., Danos V., and Weiße A. Y. Sources, propagation and consequences of stochasticity in cellular growth. Nat. Commun., 9, 4528 (2018).doi: 10.1038/s41467-018-06912-9
  23. Gillespie D. T. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22, 403–434 (1976).doi: 10.1016/0021-9991(76)90041-3
  24. Gillespie D. T. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361 (1977). doi: 10.1021/j100540a008
  25. Cao Y., Gillespie D. T., and Petzold L. R. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys., 124, 044109 (2006).doi: 10.1063/1.2159468
  26. Eisenberg E. and Levanon E. Y. Human Housekeeping genes, revisited. Trends Genet., 29, 569–574 (2013).doi: 10.1016/j.tig.2013.05.010
  27. Milo R. and Phillips R. Cell biology by the numbers (Garland Science, 2015).
  28. Scott A. F., Schmeckpeper B. J., Abdelrazik M., Comey C. T., O’Hara B., Rossiter J. P., Cooley T., Heath P., Smith K. D., and Margolet L. Origin of the human l1 elements: Proposed progenitor genes deduced from a consensus DNA sequence. Genomics, 1, 113–125 (1987). doi: 10.1016/0888-7543(87)90003-6
  29. Batzer M. A. and Deininger P. L. Alu repeats and human genomic diversity. Nat. Rev. Genet., 3, 370–379 (2002). doi: 10.1038/nrg798
  30. Phillips R., Kondev J., Theriot J., and Garcia H. Physical biology of the cell, 2nd ed. (Garland Science, N.Y., 2012).
  31. Reardon J. E. Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation. Biochemistry, 31 (18), 4473– 4479 (1992). doi: 10.1021/bi00133a013
  32. Reddy B. and Yin J. Quantitative intracellular kinetics of HIV type 1. AIDS Research and Human Retroviruses, 15, 273–283 (1999). doi: 10.1089/088922299311457
  33. Shapiro S. S. and Wilk M. B. An Analysis of variance test for normality (complete samples). Biometrika, 52, 591– 611 (1965). doi: 10.1093/biomet/52.3-4.591
  34. Solovyov A., Behr J. M., Hoyos D., Banks E., Drong A. W., Zhong J. Z., Garcia-Rivera E., McKerrow W., Chu C., Zaller D. M., Fromer M., and Greenbaum B. D. Mechanism-guided quantification of LINE-1 reveals p53 regulation of both retrotransposition and transcription. BioRxiv, 2023, 539471 (2023).doi: 10.1101/2023.05.11.539471

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».