Self-Protection of Cells From Damage: Is This Atavistic Mechanism Activаted during the Development of Various Forms of Cancer?
- Authors: Schwartsburd P.M1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 70, No 4 (2025)
- Pages: 771–779
- Section: Cell biophysics
- URL: https://journal-vniispk.ru/0006-3029/article/view/306903
- DOI: https://doi.org/10.31857/S0006302925040165
- EDN: https://elibrary.ru/LLXNMF
- ID: 306903
Cite item
Abstract
Keywords
About the authors
P. M Schwartsburd
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: P.Schwartsburd@ramber.ru
Pushchino, Moscow Region, Russia
References
- Schwartsburd H. M. Adaptive self-defence of mature cells against damage is based on the Warburg effect, dedifferentiation of cells, and resistance to cell death. Biophysics, 69 (4), 667–673 (2024).doi: 10.1134/S0006350924700751
- Yun M. H. Changes in regenerative capacity through lifespan. Int. J. Mol. Sci., 16 (10), 25392–25432 (2015).doi: 10.3390/ijms161025392
- Еремичев Р. Ю. и Макаревич П. И. Рецепция повреждения и активация роста соединительной ткани: ключевые регуляторные этапы регенерации у человека. Цитология, 66 (3), 207–222 (2024).doi: 10.31857/S004137712403001.
- Schwartsburd P. M. Un-healing wound in tissues adjacent to cancer as a result of competitive interactions between the embryonic and mature tissue repair programs. Med. Hypothesis, 73 (6), 1041–1044 (2009).doi: 10.1016/j.mehy.2009.03.054
- Jessen R., Mirsky R., and Arther-Farray P. The role of cell plasticity in tissue repair: adaptive cellular reprogramming. Dev. Cell, 34 (6), 613–620 (2015)doi: 10.1016/j.devcel.2015.09.005
- Rock A. Q. and Srivastava M. The gain and loss pf plasticity during development and evolution. Trends Cell Biol., S0962-8924(25)00030-3 (2025).doi: 10.1016/j.tcb.2025.01.008 (E-pub ahead of print)
- Yamanaka S. Shiny Yamanaka. Cell, 187 (13), 3229–3230 (2024). doi: 10.1016/j.cell.2024.05.040
- Guo Y., Wu W., Yang X., and Fu X. Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review). Mol. Med. Reports, 26 (6), 369 (2020).doi: 10.3892/mmr.2022.12886
- Hageman J. H., Heinz M. C., Kretzschmar R., van der Vaart J., and Clevers H. Intestinal regeneration: Regulation by the microenvironment. Devel. Cell, 54, 435–446 (2020). DOI: 101016/j.devcel.2020.07.009
- Rao S. and Ayres J. Resistance and tolerance defences in cancer: Lessons from infection diseases. Seminars Immun., 32, 54–61 (2017). doi: 10.1016/j.smim.2017.08.004
- Semenza G. L. Hypoxia-inducible factors 1: Regulator of mitochondrial metabolism and mediator of ischemic precondition. Biochem. Biophys. Acta, 1813 (7), 1263–1268 (2016). doi: 10.1016/j/bbamar.2010.08.06
- Kwon E. L. and Kim Y. J. What is the fetal programming? A lifetime health is under the control of in utero health. Obstet. Gynecol. Sci., 60, 506–520 (2017).doi: 10.5468/oqs.2017.60.6.506
- Zhang Z., Deng X., Liu Y., Liu Y., Sun L., and Chen F. PKM2, function, expression and regulation. Cell Biosci., 9, 52 (2019). doi: 10.1186/s13578-019-0317-8
- Schwartsburd P. М. and Aslanidi K. B. Hypoxic cancer cells protect themselves against damage: Search for a single-cell indicator of this protective response. Novel Appr. Cancer Study, 7 (4), 000668 (2023).DOI: 1031031/NACS.2023.07.000668
- Warburg O., Wind F., and Negelein E. The metabolism of tumours in the body. J. Gen. Physiol., 8 (6), 519–530 (1927).
- Jiang H., Jedoui M., and Ye J. The Warburg effect drives dedifferentiation through epigenetic reprogramming. Cancer Biol. Med., 20 (12), 891–897 (2023).doi: 10.20892/j.issn.2095-3941.2023.0467
- Riester M., Xu Q., Moreira A., Zheng J., Michor F., and Downey R. The Warburg effect: persistence of stem-cell metabolism in cancers as a failure of differentiation. Annals Oncol., 29 (1), 264–270 (2018).doi: 10.1093/annonc/mdx645
- Chen Z., Liu M., Li L., and Chen L. Involvement of the Warburg effect in non-tumour diseases processes. J. Cell Physiol., 233 (4), 2839–2849 (2018).doi: 10.1002/jcp.25998
- Saller B. S., Wohrle S., Fischer L., Dufossez C., Ingerl I. L., Kessler S., Mateo-Tortola M., Gorka O., Lange F., Cheng Y., Neuwirt E., Marada A., Koentges C., Urban C., Aktories P., Reuther P., and Giese S. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity, 58 (1), 90–107 (2025). doi: 10.1016/j.immuni.2024.10.012
- Go S., Kramer T. T., Verhoeven A. J., Oude Elferink R. P. J., and Chang J. C. The extracellular lactate-to-pyruvate ratio modulates the sensitivity to oxidative stress-induced apoptosis via the cytosolic NADH/NAD+ redox state. Apoptosis, 26 (1-2), 38–51 (2021). doi: 10.1007/s10495-020-01648-8
- Gwangwa A., Joubert A. M., and Visagise M. H. Crosstalk between Warburg effect, redox regulation and autophagia. Cell Mol. Biol. Lett., 23, 20 (2018).DOI: 10/1186/s11658-018-0088-y
- Schwartsburd P. M. Lipid droplets: Could they be involved in cancer growth and cancer-microenvironment communication? Cancer Commun., 42 (2), 83–87 (2022). doi: 10.1002/cac2.12257
- Лаборд С . Р ак (Атомиздат, М., 1979).
- Шапот В. С. Биохимические аспекты опухолевого роста (Медицина, М., 1975).
- Proal A. D. and VanElzakker M. B. Pathogens hijack host cell metabolism: Intracellular infection as a driver of the Warburg effects in cancer and other chronic inflammatory conditions. Immunometabolism, 3 (1), e210003 (2021). doi: 10.20900/immunometab20210003
- Wang L. W., Shen H., Nobre L., Ersing I., Paulo J. A., Trudeau A., Wang Z., Smith N. A., Ma Y., Renstadler B., Nomburg J., Sommermann T., Cahir-McFarlaud E., Gygi S., Montha V. K., Weekes M. P., and Gewurz B. E. Epstein-Barr-Virus-induced one carbon metabolism drives B cell transformation. Cell Metabol., 30 (3), 539–555 (2019). doi: 10.1016/j.cmet.2019.06.003
- Pouyssegur J., Marchiq I., Parks S. K., Durivault J., Zdralevic M., and Vucetic M. ‘Warburg effect’ controls tumour growth, bacterial, viral infections and immunity – Genetic deconstruction and therapeutic perspectives. Seminars Cancer Biol., 86 (Pt 2), 334–346 (2022).doi: 10.1016/semcancer.2022.07.004
- Wizenty J. and Sigal M. Gastric stem cell biology and Helocobacter pylori infection. Curr. Top Microbiol Immunol., 444, 1–24 (2023).doi: 10.1007/978-3-031-47331-9_1
- Schwitalla S., Fingerle A. A., Cammareri P., Nebelsiek T., Goktuna S. I., Ziegler P. K., Canli O., Heijmans J., Huels D. J., Moreaux G., Rupec R. A., Gerhard M., Schmid R., Barker N., Clevers H., Lang R., Neumann J., Kirchner T., Taketo M. M., Brik G., Sansom O. J., Arkan M. C., and Greten F. R. Intestinal tumorigenesis initiated by de-differentiation and acquisition of stemcell-like properties. Cell, 152 (1–2), 25–38 (2013).DOI: 101016/j.cell.2012.12.012
- Ragdale H. S., Clements M., Tang W., Deltcheva E., Andrea S., Lai A., Chang W. Y., Pandrea M., Andrew I., Game L., Uddin I., Ellis M., Enver T., Riccio A., Marguerat S., and Parrinello S. Injury primes mutation-bearing for dedifferentiation upon aging. Curr. Biol., 33 (6), 1082–1098 (2023). doi: 10.1016/j.cub.2023.02.013
- Макрушин А. В. и Худолей В. В. Опухоль как атавистическая адаптивная реакция на условия окружающей среды. Журн. общ. биологии, 52 (5), 717–720 (1991).
- Byun Y., Youn Y.-S., Lee Y.-J., Choi Y.-H., Woo S.-Y., and Kang J. L. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop. Mediators Inflam., 2014, 463524 (2014). doi: 10.1155/2014/463524
- C lement N., Glorian M., Raymondjean M., Andréani M., and Limon I. PGE2 amplifies the effects of IL-1β on vascular smooth muscle cell de-differentiation: A consequence of the versatility of PGE2 receptors 3 due to the emerging expression of adenylyl cyclase 8. J. Cell Physiol., 208 (3), 495–505 (2006).doi: 10.1002/jcp.20673
- Cheng H., Huang H., Guo Z., and Li Z. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics, 11 (18), 8836–8854 (2021). doi: 10.7150/thno.63396
- McCarty M. F. Minimizing the cancer-promoting activity of COX-2 as a central strategy in cancer prevention. Med. Hypotheses, 78 (1), 45–57 (2012).doi: 10.1016/j.mehy.2011.09.039
- Tang C., Sun H., Kadoki M., Han W., Ye X., MakushevaY., Deng J., Feng B., Qiu D., Tan Y., Wang X., Guo Z., Huang C., Peng S., Chen M., Adachi Y., Ohno N., Trombetta S., and Iwakura Y. Blocking dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nature Commun., 14 (1), 1493 (2023).doi: 10.1038/s41467-023-37229-x
- Nguyen N. T. B., Gevers S., Kok R. N. U., Burgering L. M., Neikes H., Akkerman N., Betjes M. A., Ludikhuize M. C., Gulersonmez C., Stigter E. C. A., Vercoulen Y., Drost J., Clevers H., Vermeulen M., van Zon J. S., Tans S. J., Burgering B. M. T., and Colman M. J. R. Lactate controls cancer stemness and plasticity through epigenetic regulation. Cell Metabol., 37, 1–17 (2025). doi: 10.1016/j.cmet.2025.01.002
- Andreucci E., Peppicelli S., Ruzzolini J., Bianchini F., Biagioni A., Papucci L., Magnelli L., Mazzanti B., Stecca B., and Calorini L. The acidic tumour microenvironment drives a stem-like phenotype in melanoma. J. Mol. Med., 98 (10), 1431–1446 (2020).DOI: 101007/s00109-020-01959-y
- Potter V. Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert lecture. Br. J. Cancer, 38, 1-23 (1978).
- Dvorak H. F. Tumor: wound that do not heal. Similarities between tumor stroma generation and wound healing. New Engl. J Med., 315, 1650–1656 (1986).
- Лебедев К. А. и Понякина И. Д. Иммуно-физиологические механизмы возникновения и поддержания опухолевого роста у человека. Физиология человека, 36 (4), 5–14 (2010).
- Pensotti A., Bizzarri M., and Bertolaso M. The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review). Oncol. Reports, 51 (3), 48 (2024).doi: 10.3892/or.2024.8707
- Hamaguchi R., Isowa M., Narui R., Morikawa H., Okamoto T., and Wada H. How does cancer occur? How should it be treated? Treatment from the perspective of alkalization therapy based on science-based medicine. Biomedicines, 12 (10), 2197 (2024).doi: 10.3390/biomedicines12102197
- Liao M., Yao D., Wu L., Luo C., Wang Z., Zhang J., and Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharmaceutica Sinica B, 14 (3), 953–1008 (2024).doi: 10.1016/j.apsb.2023.12.003
- Uray I. P., Dmitrovsky E., and Brown P. H. Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin. Oncol., 43 (1), 49–64 (2016).doi: 10.1053/j.seminoncol.2015.09.002
- Xin F., Luan Y., Cai J., Wu S., Mai S., Gu J., Zhan H., Li K., Lin Y., Xiao X., Liang J., Li Y., Chen W., Tan Y., Sheng L., Lu B., Lu W., Gao M., Qiu P., Su X., Yin W., Hu J., Chen Z., Sai K., Wang J., Chen F., Chen Y., Zhu S., Liu D., Cheng S., Xie Z., Zhu W., and Yan G. The anti-Warburg effect elicited by the cAMP-Pc1α pathway drives differentiation of glioblastoma cells into astrocytes. Cell Rep., 18 (2), 468–481 (2017).doi: 10.1016/j.celrep.2016.12.037
Supplementary files
