Analysis of Protein-Protein Interactions of Human Pioneer Transcription Factors Based on Predictions of the Structures of Their Complexes
- Authors: Khasanova U.N1, Gribkova A.K1, Romanova T.A1, Shaytan A.K1,2, Armeev G.A1
-
Affiliations:
- Lomonosov Moscow State University
- HSE University
- Issue: Vol 70, No 5 (2025)
- Pages: 837-853
- Section: Molecular biophysics
- URL: https://journal-vniispk.ru/0006-3029/article/view/348524
- DOI: https://doi.org/10.31857/S0006302925050012
- ID: 348524
Cite item
Abstract
About the authors
U. N Khasanova
Lomonosov Moscow State UniversityDepartment of Fundamental Physics and Chemical Engineering Moscow, Russia
A. K Gribkova
Lomonosov Moscow State UniversityDepartment of Biology Moscow, Russia
T. A Romanova
Lomonosov Moscow State UniversityDepartment of Bioengineering and Bioinformatics Moscow, Russia
A. K Shaytan
Lomonosov Moscow State University; HSE UniversityDepartment of Biology; Faculty of Computer Science Moscow, Russia; Moscow, Russia
G. A Armeev
Lomonosov Moscow State University
Email: armeezga@my.msu.ru
Department of Biology Moscow, Russia
References
- Iwafuchi-Doi M. and Zaret K. S. Pioneer transcription factors in cell reprogramming. Genes Dev., 28 (24), 2679–2692 (2014). doi: 10.1101/gad.253443.114
- Balsalobre A. and Drouin J. Pioneer factors as master regulators of the epigenome and cell fate. Nature Rev. Mol. Cell Biol., 23 (7), 449–464 (2022). doi: 10.1038/s41580-022-00464-z
- Li M. and Izpisua Belmonte J. C. Deconstructing the pluripotency gene regulatory network. Nature Cell Biol., 20 (4), 382–392 (2018). doi: 10.1038/s41556-018-0067-6
- Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., and Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131 (5), 861–872 (2007). doi: 10.1016/j.cell.2007.11.019
- Wiegand C., and Banerjee I. Recent advances in the applications of iPSC technology. Curr. Opin. Biotechnol., 60, 250–258 (2019). doi: 10.1016/j.copbio.2019.05.011
- Jonas F., Navon Y., and Barkai N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nature Rev. Genetics, 26, 424—435 (2025). doi: 10.1038/s41576-025-00816-3
- Bernardo G. M. and Keri R. A. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci. Rep., 32 (2), 113–130 (2012). doi: 10.1042/BSR20110046
- Parolia A., Cieslik M., Chu S.-C., Xiao L., Ouchi T., Zhang Y., Wang X., Vats P., Cao X., Pitchiaya S., Su F., Wang R., Feng F. Y., Wu Y.-M., Lonigro R. J., Robinson D. R., and Chinnaiyan A. M. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature, 571 (7765), 413–418 (2019). doi: 10.1038/s41586-019-1347-4
- Seachrist D. D., Anstine L. J., and Keri R. A. FOXA1: A pioneer of nuclear receptor action in breast cancer. Cancers, 13 (20), 5205 (2021). doi: 10.3390/cancers13205205
- Knoedler J. R. and Denver R. J. Krüppel-like factors are effectors of nuclear receptor signaling. Gen. Compar. Endocrinol., 203, 49–59 (2014). doi: 10.1016/j.ygcen.2014.03.003
- Siu M.-K., Suau F., Chen W.-Y., Tsai Y.-C., Tsai H.-Y., Yeh H.-L., and Liu Y.-N. KLF4 functions as an activator of the androgen receptor through reciprocal feedback. Oncogenesis, 5 (12), e282 (2016). doi: 10.1038/oncsis.2016.79
- Sevilla L. M., Latorre V., Carceller E., Boix J., Vodák D., Mills I. G., and Pérez P. Glucocorticoid receptor and Klf4 co-regulate anti-inflammatory genes in keratinocytes. Mol. Cell. Endocrinol., 412, 281–289 (2015). doi: 10.1016/j.mce.2015.05.015
- Már M., Nitsenko K., and Heidarsson P. O. Multifunctional intrinsically disordered regions in transcription factors. Chemistry (Weinheim an Der Bergstrasse, Germany), 29 (21), e202203369 (2023). doi: 10.1002/chem.202203369
- Udupa A., Kotha S. R., and Staller M. V. Commonly asked questions about transcriptional activation domains. Curr. Opin. Struct. Biol., 84, 102732 (2024). doi: 10.1016/j.sbi.2023.102732
- Sanborn A. L., Yeh B. T., Feigerle J. T., Hao C. V., Townshend R. J., Lieberman Aiden E., Dror R. O., and Kornberg R. D. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to Mediator. eLife, 10, e68068 (2021). doi: 10.7554/eLife.68068
- Erijman A., Kozlowski L., Sohrabi-Jahromi S., Fishburn J., Warfield L., Schreiber J., Noble W. S., Söding J., and Hahn S. A high-throughput screen for transcription activation domains reveals their sequence features and permits prediction by deep learning. Mol. Cell, 78 (5), 890–902.e6 (2020). doi: 10.1016/j.molcel.2020.04.020
- Soto L. F., Li Z., Santoso C. S., Berenson A., Ho I., Shen V. X., Yuan S., and Fuxman Bass J. I. Compendium of human transcription factor effector domains. Mol. Cell, 82 (3), 514–526 (2022). doi: 10.1016/j.molcel.2021.11.007
- Piskacek M., Otasevic T., Repko M., and Knight A. The 9aaTAD activation domains in the Yamanaka transcription factors Oct4, Sox2, Myc, and Klf4. Stem Cell Rev. Reports, 17 (5), 1934–1936 (2021). doi: 10.1007/s12015-021-10225-8
- Orsetti A., van Oosten D., Vasarhelyi R.-G., Dănescu T.-M., Huertas J., van Ingen H., and Cojocaru V. Structural dynamics in chromatin unraveling by pioneer transcription factors. Biophys. Rev., 16 (3), 365–382 (2024). doi: 10.1007/s12551-024-01205-6
- Fedulova A. S., Armeev G. A., Romanova T. A., Singh-Palchevskaia L., Kosarim N. A., Motorin N. A., Komarova G. A., and Shaytan A. K. Molecular dynamics simulations of nucleosomes are coming of age. WIREs Comput. Mol. Sci., 14 (4), e1728 (2024). doi: 10.1002/wcms.1728
- Luzete-Monteiro E. and Zaret K.S. Structures and consequences of pioneer factor binding to nucleosomes. Curr. Opin. Struct. Biol., 75, 102425 (2022). doi: 10.1016/j.sbi.2022.102425
- Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A.W., Kavukcuoglu K., Kohli P., and Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature, 596 (7873), 583—589 (2021). doi: 10.1038/s41586-021-03819-2
- Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F.B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., and Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630 (8016), 493–500 (2024). doi: 10.1038/s41586-024-07487-w
- Evans R., O’Neill M., Pritzel A., Antropova N., Senior A., Green T., Žídek A., Bates R., Blackwell S., Yim J., Ronneberger O., Bodenstein S., Zielinski M., Bridgland A., Potapenko A., Cowie A., Tunyasuvunakool K., Jain R., Clancy E., Kohli P., Jumper J., and Hassabis D. Protein complex prediction with AlphaFold-Multimer. 2021.10.04.463034 (2022). doi: 10.1101/2021.10.04.463034
- James A. M., Schmid E. W., Walter J. C., and Farnung L. In silico screening identifies SHPRH as a novel nucleosome acidic patch interactor. 2024.06.26.600687 (2024). doi: 10.1101/2024.06.26.600687
- Schmid E. W. and Walter J. C. Predictomes, a classifier-curated database of AlphaFold-modeled protein-protein interactions. Mol. Cell, 85 (6), 1216–1232 (2025). doi: 10.1016/j.molcel.2025.01.034
- El-Gebali S., Mistry J., Bateman A., Eddy S. R., Luciani A., Potter S. C., Qureshi M., Richardson L. J., Salazar G. A., Smart A., Sonnhammer E. L. L., Hirsh L., Paladin L., Piovesan D., Tosatto S. C. E., and Finn R. D. The Pfam protein families database in 2019. Nucl. Acids Res., 47 (D1), D427–32 (2019). doi: 10.1093/nar/gky995
- Blum M., Andreeva A., Florentino L. C., Chuguransky S. R., Grego T., Hobbs E., Pinto B. L., Orr A., Paysan-Lafosse T., Ponamareva I., Salazar G. A., Bordin N., Bork P., Bridge A., Colwell L., Gough J., Haft D. H., Letunic I., Llinares-López F., Marchler-Bauer A., Meng-Papaxanthos L., Mi H., Natale D. A., Orengo C. A., Pandurangan A. P., Piovesan D., Rivoire C., Sigrist C. J. A., Thanki N., Thibaud-Nissen F., Thomas P. D., Tosatto S. C. E., Wu C. H., and Bateman A. InterPro: the protein sequence classification resource in 2025. Nucl. Acids Res., 53 (D1), D444–D456 (2025). doi: 10.1093/nar/gkae1082
- The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucl. Acids Res., gkac1052 (2022). doi: 10.1093/nar/gkac1052
- Thul P. J., Åkesson L., Wiking M., Mahdessian D., Geladaki A., Ait Blal H., Alm T., Asplund A., Björk L., Breckels L. M., Bäckström A., Danielsson F., Fagerberg L., Fall J., Gatto L., Gnann C., Hober S., Hjelmare M., Johansson F., Lee S., Lindskog C., Mulder J., Mulvey C. M., Nilsson P., Oksvold P., Rockberg J., Schutten R., Schwenk J. M., Sivertsson Å., Sjöstedt E., Skogs M., Stadler C., Sullivan D. P., Tegel H., Winsnes C., Zhang C., Zwahlen M., Mardinoglu A., Pontén F., von Feilitzen K., Lilley K. S., Uhlén M., and Lundberg E. A subcellular map of the human proteome. Science, 356 (6340), eaal3321 (2017). doi: 10.1126/science.aal3321
- Zhang J., Humphreys I. R., Pei J., Kim J., Choi C., Yuan R., Durham J., Liu S., Choi H.-J., Baek M., Baker D., and Cong Q. Computing the human interactome. 2024.10.01.615885 (2024). doi: 10.1101/2024.10.01.615885
- Bryant P., Pozzati G. and Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nature Commun., 13 (1), 1265 (2022). doi: 10.1038/s41467-022-28865-w
- Dunbrack R. L. Rēs ipSAE loquunt: What’s wrong with AlphaFold’s ipTM score and how to fix it. 2025.02.10.637595 (2025). doi: 10.1101/2025.02.10.637595
- Fang Z., Liu X., and Peltz G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics, 39 (1), btac757 (2023). doi: 10.1093/bioinformatics/btac757
- Piovesan D., Del Conte A., Mehdiabadi M., Aspromonte M. C., Blum M., Tesei G., von Bülow S., Lindorff-Larsen K., and Tosatto S. C. E. MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins. Nucl. Acids Res., 53 (D1), D495–D503 (2025). doi: 10.1093/nar/gkae969
- Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L. E., Brookes D. H., Wilson L., Chen J., Liles K., Chun M., Li P., Gohara D. W., Dolinsky T., Konecny R., Koes D. R., Nielsen J. E., Head-Gordon T., Geng W., Krasny R., Wei G.-W., Holst M. J., McCammon J. A., and Baker N. A. Improvements to the APBS biomolecular solvation software suite. Prot. Sci., 27 (1), 112—128 (2017). doi: 10.1002/pro.3280
- Reményi A., Lins K., Nissen L. J., Reinbold R., Schöler H. R., and Wilmanns M. Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev., 17 (16), 2048–2059 (2003). doi: 10.1101/gad.269303
- Weikum E. R., Liu X., and Ortlund E. A. The nuclear receptor superfamily: A structural perspective. Prot. Sci., 27 (11), 1876–1892 (2018). doi: 10.1002/pro.3496
- Piskacek M., Havelka M., Jendruchova K., and Knight A. Nuclear hormone receptors: Ancient 9aaTAD and evolutionally gained NCoA activation pathways. J. Steroid Biochem. Mol. Biol., 187, 118–123 (2019). doi: 10.1016/j.jsbmb.2018.11.008
- The Gene Ontology Consortium, Aleksander S. A., Balhoff J., Carbon S., Cherry J. M., Drabkin H. J., Ebert D., Feuermann M., Gaudet P., Harris N. L., Hill D. P., Lee R., Mi H., Moxon S., Mungall C. J., Muruganugan A., Mushayahama T., Sternberg P. W., Thomas P. D., Van Auken K., Ramsey J., Siegele D. A., Chisholm R. L., Fey P., Aspromonte M. C., Nugnes M. V., Quaglia F., Tosatto S., Giglio M., Nadendla S., Antonazzo G., Attrill H., dos Santos G., Marygold S., Strelets V., Tabone C. J., Thurmond J., Zhou P., Ahmed S. H., Asanitthong P., Luna Buitrago D., Erdol M. N., Gage M. C., Ali Kadhum M., Li K. Y. C., Long M., Michalak A., Pesala A., Pritazahra A., Saverimuttu S. C. C., Su R., Thurlow K. E., Lovering R. C., Logie C., Oliferenko S., Blake J., Christie K., Corbani L., Dolan M. E., Drabkin H. J., Hill D. P., Ni L., Sitnikov D., Smith C., Cuzick A., Seager J., Cooper L., Elser J., Jaiswal P., Gupta P., Jaiswal P., Naithani S., Lera-Ramirez M., Rutherford K., Wood V., De Pons J. L., Dwinell M. R., Hayman G. T., Kaldunski M. L., Kwitek A. E., Laulederkind S. J. F., Tutaj M. A., Vedi M., Wang S.-J., D’Eustachio P., Aimo L., Axelsen K., Bridge A., Hyka-Nouspikel N., Morgat A., Aleksander S. A., Cherry J. M., Engel S. R., Karra K., Miyasato S. R., Nash R. S., Skrzypek M. S., Weng S., Wong E. D., Bakker E., Berardini T. Z., Reiser L., Auchincloss A., Axelsen K., Argoud-Puy G., Blatter M.-C., Boutet E., Breuza L., Bridge A., Casals-Casas C., Coudert E., Estreicher A., Livia Famiglietti M., Feuermann M., Gos A., Gruaz-Gumowski N., Hulo C., Hyka-Nouspikel N., Jungo F., Le Mercier P., Lieberherr D., Masson P., Morgat A., Pedruzzi I., Pourcel L., Poux S., Rivoire C., Sundaram S., Bateman A., Bowler-Barnett E., Bye-A-Jee H., Denny P., Ignatchenko A., Ishtiaq R., Lock A., Lussi Y., Magrane M., Martin M. J., Orchard S., Raposo P., Speretta E., Tyagi N., Warner K., Zaru R., Diehl A. D., Lee R., Chan J., Diamantakis S., Raciti D., Zarowiecki M., Fisher M., James-Zorn C., Ponferrada V., Zorn A., Ramachandran S., Ruzicka L., and Westerfield M. The Gene Ontology knowledgebase in 2023. Genetics, 224 (1), iyad031 (2023). doi: 10.1093/genetics/iyad031
- Barral A. and Zaret K. S. Pioneer factors: roles and their regulation in development. Trends Genet., 40 (2), 134–148 (2024). doi: 10.1016/j.tig.2023.10.007
- Jauch R., Ng C. K. L., Saikatendu K. S., Stevens R. C., and Kolatkar P. R. Crystal structure and DNA binding of the homeodomain of the stem cell transcription factor Nanog. J. Mol. Biol., 376 (3), 758–770 (2008). doi: 10.1016/j.jmb.2007.11.091
- Liu B. H., Jobichen C., Chia C. S. B., Chan T. H. M., Tang J. P., Chung T. X. Y., Li J., Poulsen A., Hung A. W., Koh-Stenta X., Tan Y. S., Verma C. S., Tan H. K., Wu C.-S., Li F., Hill J., Joy J., Yang H., Chai L., Sivaraman J., and Tenen D. G. Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide. Proc Natl. Acad. Scie. USA, 115 (30), E7119–E7128 (2018). doi: 10.1073/pnas.1801253115
- Megy S., Bertho G., Gharbi-Benarous J., Baleux F., Benarous R., and Girault J.-P. STD and TRNOESY NMR studies for the epitope mapping of the phosphorylation motif of the oncogenic protein beta-catenin recognized by a selective monoclonal antibody. FEBS Lett., 580 (22), 5411–5422 (2006). doi: 10.1016/j.febslet.2006.08.084
- Wang L., Nam Y., Lee A. K., Yu C., Roth K., Chen C., Ransey E. M., and Sliz P. LIN28 zinc knuckle domain is required and sufficient to induce let-7 oligouridylation. Cell Rep., 18 (11), 2664–2675 (2017). doi: 10.1016/j.celrep.2017.02.044
- Michael A. K., Grand R. S., Isbel L., Cavadini S., Kozicka Z., Kempf G., Bunker R. D., Schenk A. D., Graff-Meyer A., Pathare G. R., Weiss J., Matsumoto S., Burger L., Schübeler D., and Thomä N. H. Mechanisms of OCT4-SOX2 motif readout on nucleosomes. Science, 368 (6498), 1460–1465 (2020). doi: 10.1126/science.abb0074
- Burke D. F., Bryant P., Barrio-Hernandez I., Memon D., Pozzati G., Shenoy A., Zhu W., Dunham A. S., Albanese P., Keller A., Scheltema R. A., Bruce J. E., Leitner A., Kundrotas P., Beltrao P., and Elofsson A. Towards a structurally resolved human protein interaction network. Nature Struct. Mol. Biol., 30 (2), 216–225 (2023). doi: 10.1038/s41594-022-00910-8
- Takahashi K. and Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126 (4), 663–676 (2006). doi: 10.1016/j.cell.2006.07.024
- Jauch R., Aksoy I., Hutchins A. P., Ng C. K. L., Tian X. F., Chen J., Palasingam P., Robson P., Stanton L. W., and Kolatkar P. R. Conversion of Sox17 into a Pluripotency Reprogramming Factor by Reengineering Its Association with Oct4 on DNA. Stem Cells, 29 (6), 940–951 (2011). doi: 10.1002/stem.639
- Sinha K. K., Bilokapic S., Du Y., Malik D., and Halic M. Histone modifications regulate pioneer transcription factor cooperativity. Nature, 619 (7969), 378–384 (2023). doi: 10.1038/s41586-023-06112-6
- Gao J., Aksoy B. A., Dogrusoz U., Dresdner G., Gross B., Sumer S. O., Sun Y., Jacobsen A., Sinha R., Larsson E., Cerami E., Sander C., and Schultz N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 6 (269), pl1 (2013). doi: 10.1126/scisignal.2004088
- Clark V. E., Erson-Omay E. Z., Serin A., Yin J., Cotney J., Özduman K., Avşar T., Li J., Murray P. B., Henegariu O., Yilmaz S., Günel J. M., Carrión-Grant G., Yılmaz B., Grady C., Tanrıkulu B., Bakırcıoğlu M., Kaymakçalan H., Caglayan A. O., Sencar L., Ceyhun E., Atik A. F., Bayri Y., Bai H., Kolb L. E., Hebert R. M., Omay S. B., Mishra-Gorur K., Choi M., Overton J. D., Holland E. C., Mane S., State M. W., Bilgüvar K., Baehring J. M., Gutin P. H., Piepmeier J. M., Vortmeyer A., Brennan C. W., Pamir M. N., Kılıç T., Lifton R. P., Noonan J. P., Yasuno K., and Günel M. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science, 339 (6123), 1077–1080 (2013). doi: 10.1126/science.1233009
- Schuetz A., Nana D., Rose C., Zocher G., Milanovic M., Koenigsmann J., Blasig R., Heinemann U., and Carstanjen D. The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cell. Mol. Life Sci., 68 (18), 3121–3131 (2011). doi: 10.1007/s00018-010-0618-x
- He Z., He J., and Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov., 9 (1), 1–13 (2023). doi: 10.1038/s41420-023-01416-y
Supplementary files



