Structure and Cooperative Interactions Between the Guanine Quadruplexes of the Promoter of Gallus gallus βA-Globin Gene

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Guanine quadruplexes are nucleic acid secondary structures present in the genomes of all eukaryotes, from yeast to mammals, where they play an important role in maintaining telomere integrity, creating TAD boundaries, and regulating transcription, alternative splicing, and translation. It was found that, contributing to the formation of a nucleosome-free region, guanine quadruplexes formed by two G-rich motifs inside the replication origin that is located within the βA-globin promoter in Gallus gallus, are necessary for the initiation of replication. In our work, circular dichroism spectroscopy was used to study the structures and dynamic properties of guanine quadruplexes formed by the βA-globin promoter/origin sequence in vitro. The data obtained show that quadruplexes located on the same DNA fragment are formed cooperatively, influencing the structures of each other and the entire DNA fragment on which they are located. These data suggest that the structures of guanine quadruplexes may be determined by their genomic environment, and also help explain some of the properties of quadruplexes observed in vivo.

About the authors

E. V Marilovtseva

The Mental Health Research Center

Moscow, Russia

D. O Koshkina

Lomonosov Moscow State University; Institute of Gene Biology, Russian Academy of Sciences

Faculty of Biology Moscow, Russia; Moscow, Russia

A. V Feofanov

Lomonosov Moscow State University

Email: arfeofanov@yandex.ru
Faculty of Biology Moscow, Russia

V. M Studitsky

Lomonosov Moscow State University; Fox Chase Cancer Center

Email: vasily.snaditsky@fccc.edu
Faculty of Biology Moscow, Russia; Philadelphia, USA

References

  1. Leontis N. B. and Westhof E. Geometric nomenclature and classification of RNA base pairs. RNA, 7, 499–512, (2001). doi: 10.1017/S1355838201002515
  2. Ghosh A. and Bansal M. A glossary of DNA structures from A to Z. Acta Crystallogr. D Biol. Crystallogr., 59, 620–626 (2003). doi: 10.1107/S0907444903003251
  3. Burge S., Parkinson G. N., Hazel P., Todd A. K., and Neidle S. Quadruplex DNA: Sequence, topology and structure. Nucl. Acids Res., 34, 5402–5415 (2006). doi: 10.1093/NAR/GKL655
  4. Phan A.T., Kuryavyi V., Burge S., Neidle S., and Patel D. J. Structure of an unprecedented G-quadruplex scaffold in the human c-Kit promoter. J. Am. Chem. Soc., 129, 4386–4392 (2007). doi: 10.1021/JA068739H
  5. Bhattacharyya D., Arachchilage G. M., and Basu S. Metal cations in G-quadruplex folding and stability. Front. Chem., 4, (2016). doi: 10.3389/FCHEM.2016.00038
  6. Guédin A., Gros J., Alberti P., and Mergny J. L. How long is too long? Effects of loop size on G-quadruplex stability. Nucl. Acids Res., 38, 7858–7868 (2010). doi: 10.1093/NAR/GKQ639
  7. Agrawal P., Hatzakis E., Guo K., Carver M., and Yang D. Solution structure of the major G-quadruplex formed in the human VEGF promoter in K+: Insights into loop interactions of the parallel G-quadruplexes. Nucleic Acids Res 2013, 41, 10584–10592, doi: 10.1093/NAR/GKT784
  8. Pandey S., Agarwala P., and Maiti S. Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J. Phys. Chem. B, 117, 6896–6905 (2013). doi: 10.1021/JP401739M
  9. Ma Y., Iida K., and Nagasawa K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem. Biophys. Res. Commun., 531, 3–17 (2020). doi: 10.1016/j.bbrc.2019.12.103
  10. Li Q. J., Tong X. J., Duan Y. M., and Zhou J. Q. Characterization of the intramolecular G-quadruplex promoting activity of Esri. FEBS Lett., 587, 659–665 (2013). doi: 10.1016/J.FEBSLET.2013.01.024
  11. Zhang L., Sui C., Yang W., and Luo Q. Amino acid transporters: Emerging roles in drug delivery for tumor-targeting therapy. Asian J. Pharm. Sci., 15, 192–206 (2020). doi: 10.1016/j.aips.2019.12.002
  12. Bryan T. M. G-quadruplexes at telomeres: Friend or foe? Molecules, 25 (16), 3686 (2020). doi: 10.3390/molecules25163686
  13. Shiekh S., Kodikara S. G., and Balci H. Structure, topology, and stability of multiple G-quadruplexes in long telomeric overhangs. J. Mol. Biol., 436 (1), 168205 (2024). doi: 10.1016/j.jmb.2023.168205
  14. Hou Y., Li F., Zhang R., Li S., Liu H., Qin Z. S., and Sun X. Integrative characterization of G-quadruplexes in the three-dimensional chromatin structure. Epigenetics, 14, 894–911 (2019). doi: 10.1080/1559294.2019.1621140
  15. Williams J. D., Housevova D., Johnson B. R., Dyniewski B., Berroyer A., French H., Barchie A. A., Bilbrey D. D., Demeis J. D., Ghee K. R., Hughes A. G., Kreitz N. W., McInnis C. H., Pudner S. C., Reeves M. N., Stahly A. N., Turcu A., Watters B. C., Daly G. T., Langley R. J., Gillespie M. N., Prakash A., Larson E. D., Kasukurthi M. V., Huang J., Jinks-Robertson S., and Borchert G. M. Characterization of long G4-rich enhancer-associated genomic regions engaging in a novel loop-loop “G4 Kissing” interaction. Nucl. Acids Res., 48, 5907–5925 (2020). doi: 10.1093/NAR/GKAA357
  16. Mao S. Q., Ghanbarian A. T., Spiegel J., Martinez Cuesta S., Beraldi D., Di Antonio M., Marsico G., Hänsel-Hertsch R., Tamahill D., and Balasubramanian S. DNA G-quadruplex structures mold the DNA methylome. Nat. Struct. Mol. Biol., 25, 951–957 (2018). doi: 10.1038/S41594-018-0131-8
  17. Berardinelli F., Tanori M., Muoto D., Buccarelli M., Di Masi A., Leone S., Ricci-Vitiani L., Pallini R., Mancuso M., and Antoccia A. G-Quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated-and stem-cancer cells. J. Exp. Clin. Cancer Res., 38, 311 (2019). doi: 10.1186/S13046-019-1293-X
  18. Yang M., Carter S., Parmar S., Bunne D. D., Calabrese D. R., Liang X., Yazdani K., Xu M., Liu Z., Thiele C. J., and Schneekloch J. S. Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene. Nucl. Acids Res., 49, 7856–7869 (2021). doi: 10.1093/NAR/GKAB594
  19. Han Z. and Wen L. G.-Quadruplex in cancer energy metabolism: a potential therapeutic target. Biochim. Biophys. Acta Gen. Subj., 1869 (7), 130810 (2025). doi: 10.1016/j.bbagen.2025.130810
  20. Figueiredo J., Mergny J. L., and Cruz C. G.-Quadruplex ligands in cancer therapy: Progress, challenges, and clinical perspectives. Life Sci., 340, 122481 (2024). doi: 10.1016/j.lfs.2024.122481
  21. Bhattacharyya U., Bhatia T., Deshpande S. N., and Thelma B. K. Association of G-quadruplex variants with schizophrenia symptoms. Schizophr. Res., 243, 361–363 (2022). doi: 10.1016/j.schres.2021.06.008
  22. Mohaghegh P., Karow J. K., Brosn R. M., Bohr V. A., and Hickson I. D. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucl. Acids Res., 29, 2843–2849 (2001). doi: 10.1093/NAR/29.13.2843
  23. Alkhunazi E., Shaheen R., Bharti S. K., Joseph-George A. M., Chong K., Abdel-Salam G. M. H., Alowan M., Blaser S. I., Papsin, B. C., Butt, M., Hashem M., Martin N., Godoy R., Brosn R. M. Jr, Alkuraya F. S., and Chitayat D. Warsaw breakage syndrome: Further clinical and genetic delineation. Am. J. Med. Genet. A, 176, 2404–2418 (2018), doi: 10.1002/AJMG.A.40482
  24. van Schiel J. J. M., Faramarz A., Balk J. A., Stewart G. S., Cantelli E., Oostra A. B., Rootmans M. A., Parish J. L., de Almeida Esteves C., Dumic, K., Barisic I., Diderich K. E. M., van Siegtenhorst M. A., Mahlab M., Pisani F. M., Te Riele H., Ameziane N., Wolthuis R. M. F., and de Lange J. Warsaw breakage syndrome associated DDXII helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat. Commun., 11 (1), 4287 (2020). doi: 10.1038/S41467-020-18066-8
  25. Poulet-Benedetti J., Tonnerre-Doncarii C., Valton A. L., Laurent M., Gerard M., Barinova N., Parisis N., Massip, F., Picard F., and Prioleau M. N. Dimeric G-quadruplex motifs-induced NFRS determine strong replication origins in vertebrates. Nat. Commun., 14, 4843 (2023). doi: 10.1038/S41467-023-40441-4
  26. Borras L. and Huguelet P. Schizophrenia and beta-thalassemia: A genetic link? Psychiatry Res., 158, 260–261 (2008). doi: 10.1016/j.psychres.2007.11.001
  27. Jin Y., Cheng Y., Mi J., and Xu J. A rare case of schizophrenia coexistence with antiphospholipid syndrome, β-thalassemia, and monoclonal gammopathy of undetermined significance. Front. Psychiatry, 14, 1178247 (2023). doi: 10.3389/FPSYT.2023.1178247
  28. Del Villar-Guerra R., Gray R. D., and Chaires J. B. Characterization of quadruplex DNA structure by circular dichroism. Curr. Protoc. Nucl. Acid Chem., 68, 17.8.1–17.8.16 (2017). doi: 10.1002/CPNC.23
  29. Zacchia M., Abategiovanni M. L., Stratigis S., and Capasso G. Potassium: From physiology to clinical implications. Kidney Dis. (Basel), 2, 72–79 (2016). doi: 10.1159/000446268
  30. Schiavone D., Guilbaud G., Murat P., Papadopoulou C., Sarkies P., Prioleau M., Balasubramanian S., and Sale J. E. Determinants of G quadruplex-induced epigenetic instability in REV 1-deficient cells. EMBO J., 33, 2507–2520 (2014). doi: 10.15252/EMBI.201488398
  31. Valton A. L., Hassan-Zadeh V., Lema I., Boggetto N., Alberti P., Saintomé C., Riou J. F., and Prioleau M. N. G4 motifs affect origin positioning and efficiency in two vertebrate replicators. EMBO J., 33, 732–746 (2014). doi: 10.1002/EMBI.201387506
  32. del Villar-Guerra R., Trent J. O., and Chaires J. B. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew. Chem. Int. Ed. Engl., 57, 7171–7175 (2018). doi: 10.1002/ANIE.201709184
  33. Harkness R. W. and Mittermaier A. K. G-register exchange dynamics in guanine quadruplexes. Nucl. Acids Res., 44, 3481–3494 (2016). doi: 10.1093/NAR/GKW190
  34. Linke R., Limmer M., Juranek S. A., Heine A., and Paeschke K. The relevance of G-quadruplexes for DNA repair. Int. J. Mol. Sci., 22 (22), 12599 (2021). doi: 10.3390/IJMS222212599

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».